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Abstract

This study proposes a new method for regression – lp-norm support vector regression (lp SVR). Some classical SVRs minimize
the hinge loss function subject to the l2-norm or l1-norm penalty. These methods are non-adaptive since their penalty forms are
fixed and pre-determined for any types of data. Our new model is an adaptive learning procedure with lp-norm (0 < p < 1),
where the best p is automatically chosen by data. By adjusting the parameter p, lp SVR can not only select relevant features
but also improve the regression accuracy. An iterative algorithm is suggested to solve the lp SVR efficiently. Simulations and
real data applications support the effectiveness of the proposed procedure.
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1. Introduction

Support vector machines (SVMs), being computationally powerful tools for pattern classification and regres-
sion, have been successfully applied to a variety of real-world problems([1]- [6]). Regards to the support vector
regression (SVR), some classical SVRs minimize the hinge loss function subject to the l2-norm or l1-norm penalty
([7]). We call them l2 SVR or l1 SVR correspondingly. These methods are non-adaptive since their penalty forms
are fixed and pre-determined for any types of data.

Recently, lp-norm (p ∈ (0, 1)) attracts great attention in the optimization framework, the idea that using lp-
norm can find sparse solutions is considered in [8]-[11]. Correspondingly, [12]-[17] propose lp-norm (0 < p < 1)
support vector machine for classification (lp SVC), which replace the l2-norm penalty by the lp-norm (p ∈ (0, 1))
penalty in the objective function in the primal problem in the standard linear l2 SVC. Compared with SVC with a
fixed norm, lp SVC is desired for feature selection since it can automatically select relevant features by adjusting
the parameter p. However, lp SVC is used only to solve classification problems. This motivates us to consider a
new model with lp-norm for regression problems.

This paper proposes a new method for regression – lp-norm support vector regression (lp SVR), which replaces
l2-norm by lp-norm (0 < p < 1) in the classical l2 SVR. Our new model is an adaptive learning procedure with
lp-norm (0 < p < 1), where the best p is automatically chosen by data. By adjusting the parameter p, lp SVR
can not only select relevant features but also improve the regression accuracy. In order to solve the non-convex
problem in our model, an efficient algorithm is constructed using the successive linear approximation algorithm
(SLA)([18]).
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Now we describe our notation. All vectors are column vectors unless transposed to a row vector by a super
script T . For a vector x in Rn, [x]i(i = 1, 2, · · · , n) denotes the i-th component of x. |x| denotes a vector in Rn of
absolute value of the components of x. ‖x‖p denotes that (|[x]1|p + · · · + |[x]n|p)

1
p . Strictly speaking, ‖x‖p is not a

general norm when 0 < p < 1, but we still follow this term lp-norm, because the forms are same except that the
values of p are different. ‖x‖0 is the number of nonzero components of x. For two vectors x ∈ Rn and y ∈ Rn, (x · y)
denotes the inner product of x and y.

This paper is organized as follows. In section 2, the lp SVR is introduced. In section 3, the SLA is proposed to
solve lp SVR. In section 4, the lower bounds for the absolute value of nonzero entries in any local optimal solution
is established. In section 5, numerical experiments are given to demonstrate the effectiveness of our method. We
conclude this paper in section 6.

2. lp Support Vector Regression

Suppose that the training set T is given by

T = {(x1, y1), · · · , (xl, yl)} ∈ (Rn × R)l, (1)

where x j ∈ Rn, y j ∈ R ( j = 1, · · · , l), the linear regression problem is to find a decision function f (x) = (w · x) + b
to derive the value of y for any x by the function y = f (x).

In the classical l2 SVR, the decision function is decided by the solution to the following optimization problem:

min
w, b, ξ,η

1
2
‖w‖22 +C

l∑
i=1

(ηi + ξi) , (2)

s.t. ((w · xi) + b) − yi ≤ ε + ηi , i = 1, · · · , l , (3)

yi − ((w · xi) + b) ≤ ε + ξi, i = 1, · · · , l , (4)

ξi, ηi ≥ 0 , i = 1, · · · , l. (5)

Replacing the first term 1
2‖w‖22 in the objective function of the above problem by ‖w‖pp (0 < p < 1), lp SVR

proposes the following problem:

min
w, b, ξ,η

‖w‖pp +C
l∑

i=1

(ηi + ξi) , (6)

s.t. ((w · xi) + b) − yi ≤ ε + ηi, , i = 1, · · · , l , (7)

yi − ((w · xi) + b) ≤ ε + ξi, i = 1, · · · , l , (8)

ξi, ηi ≥ 0 , i = 1, · · · , l, (9)

where C (C > 0), p (0 < p < 1) and ε (ε > 0) are parameters. The algorithm of lp SVR is described as follows:
Algorithm 1

1. Give the training set T = {(x1, y1), · · · , (xl, yl)} ∈ (Rn × R)l, where xi ∈ Rn,yi ∈ R, i = 1, · · · , l;
2. Select proper parameters C, p, ε, where C > 0, 0 < p < 1 and ε > 0;
3. Solve problem (6)-(9) and get the solution (w∗, b∗);
4. Select the feature set: {i|[w∗]i � 0, (i = 1, · · · , n)};
5. Construct the decision function y = (w̃∗ · x) + b∗, where the components of w̃∗ are nonzero components of

w∗ and the components of x̃ are also corresponding to nonzero components of w∗.

3. The SLA for problem (6)-(9)

Consider the problem (6)-(9), the objective function is not differentiable, because of the absolute value in the
first item. In order to make this problem smooth, we introduce the variable ν = ([ν]1, · · · , [ν]n)T , and get the
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following equivalent problem:

min
w,ν, b, ξ, η

n∑
i=1

[ν]p
i +C

l∑
i=1

(ηi + ξi) , (10)

s.t. ((w · xi) + b) − yi ≤ ε + ηi, , i = 1, · · · , l , (11)

yi − ((w · xi) + b) ≤ ε + ξi, i = 1, · · · , l , (12)

ξi, ηi ≥ 0 , i = 1, · · · , l, (13)

−ν ≤ w ≤ v. (14)

When p ∈ (0, 1), we note that the problem (10)-(14) is differentiable, but not convex. In fact, it is the minimization
of a concave objective function over a polyhedral set. Even though it is difficult to find a global solution to
this problem, a fast successive linear approximation (SLA) algorithm ([18]) terminates finitely at a stationary
point which satisfies the necessary optimality condition for problem (10)-(14). For convenience we state the SLA
algorithm below.

Algorithm 2 (SLA for problem (10)-(14))
1. Select the proper parameters C > 0, 0 < p < 1, ε > 0 and a precision δ(0 < δ << 1), start with a random
ν0 = ([ν]0

1, [ν]
0
2, · · · , [ν]0

n)T and let k = 1;
2. Solve the following problem

min
w, ν, b, ξ, η

n∑
i=1

[νk−1]p−1
i [ν]i +C

l∑
i=1

(ηi + ξi) , (15)

s.t. ((w · xi) + b) − yi ≤ ε + ηi, , i = 1, · · · , l , (16)

yi − ((w · xi) + b) ≤ ε + ξi, i = 1, · · · , l , (17)

ξi, ηi ≥ 0 , i = 1, · · · , l, (18)

−ν ≤ w ≤ v. (19)
where (νk−1)p−1 = ([νk−1]p−1

1 , · · · , [νk−1]p−1
n )T , and get its solution (wk, bk, ηk, ξk, νk);

3. If

∣∣∣∣∣∣∣
n∑

i=1

[νk−1]p−1
i ([νk]i − [νk−1]p−1

i ) +C
l∑

i=1

(ηk
i − ηk−1

i + ξki − ξk−1
i )

∣∣∣∣∣∣∣ < δ(0 < δ � 1), then stop and get the

solution w∗ = wk, b∗ = bk; Otherwise, let k = k + 1 and go back to step 2.

4. The lower bounds for nonzero components in solutions

In Algorithm 1, it is easy to see that our lp SVR can accomplish feature selection and regression simultane-
ously. Feature selection needs to find the nonzero components of the solution to the problem (6)-(9). However,
usually the above Algorithm 2 can only provide an approximate local solution where nonzero components in the
solution can not be identified theoretically. Using a similar strategy in [8], we get the following theorem 1, which
can be used to identify nonzero components in any local optimal solutions to the problem (6)-(9), even though the
Algorithm 2 can only find the approximate local optimal solution.

Theorem 1 For any local optimal solution (w∗, b∗, ξ∗) to the problem (6)-(9), we have

|[w∗] j| ≥ (p/(C
l∑

i=1

|xi| j))
1

1−p , j = 1, 2, · · · , n.

Proof. Suppose ‖w∗‖0 = k, (1 < k ≤ n), without loss of generality, let w∗ = ([w]∗1, · · · , [w]∗k, 0, · · · , 0)T where
[w]∗i � 0, i = 1, · · · , k. Let w̃∗ = ([w]∗1, · · · , [w]∗k)T , x̃i = ([xi]1, · · · , [xi]k)T ∈ Rk, i = 1, · · · , l, we consider a new
optimization problem:

min
w̃, b̃, ξ̃,η̃

‖w̃‖pp +C
l∑

i=1

(η̃i + ξ̃i) , (20)
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s.t. ((w̃ · x̃i) + b̃) − yi ≤ ε + η̃i, , i = 1, · · · , l , (21)

yi − ((w̃ · x̃i) + b) ≤ ε + ξ̃i, i = 1, · · · , l , (22)

ξ̃i, η̃i ≥ 0 , i = 1, · · · , l, (23)

where w̃ ∈ Rk, b̃ ∈ R, η̃ ∈ Rl, ξ̃ ∈ Rl. Obviously, (w̃∗, b∗, η∗, ξ∗) is a local minimizer of problem (20)-(23).
According to the KKT condition, there exist Lagrange multipliers α∗i , β

∗
i (i = 1, · · · , l) satisfy:

p(|w̃∗|p−1 · sign(w̃∗)) −
l∑

i=1

(β∗i − α∗i )x̃i = 0, (24)

0 ≤ α∗i ≤ C, 0 ≤ β∗i ≤ C. (25)

According to (24), we have

p(|w̃∗|p−1 · sign(w̃∗)) =
l∑

i=1

(βi − αi)x̃i.

Furthermore, by (25), we have

p |w̃∗|p−1 =

∣∣∣∣∣∣
l∑

i=1
(βi − αi)x̃i

∣∣∣∣∣∣ ≤
l∑

i=1
|βi − αi| |x̃i| ≤ C

l∑
i=1
|xi|, 0 < p < 1

So,
∣∣∣∣w∗j
∣∣∣∣ ≥ (p/(C

l∑
i=1
|xi| j))

1
1−p , for j = 1, · · · , n.

According to Theorem 1, we can identify the nonzero components of the local optimal solution to (6)-(9).
Based on the Algorithm 2 and Theorem 1, the new algorithm is established as follows:

Algorithm 3 (lp-SVR):
1. Give the training set T = {(x1, y1), · · · , (xl, yl)} ∈ (Rn × R)l, where xi ∈ Rn,yi ∈ R, i = 1, · · · , l;
2. Select proper parameters C, p, ε, where C > 0, 0 < p < 1;
3. Solve problem (6)-(9) by Algorithm 2 and get the solution (w∗, b∗);

4. Compute Lj = (p/(C
l∑

i=1
|xi| j))

1
1−p , j = 1, · · · , n; select the feature index set: F′ = {i|[w∗]i| ≥ Li, i = 1, · · · , n};

5. Construct the decision function f (x) = sgn((w̃∗ · x̃) + b∗), where w̃∗ are composed by the components in the
F′ of w∗ and the components of x̃ are also corresponding to components in the feature set F′ of w∗.

In the following section, our experiments are conducted according to the algorithm 3.

5. Numerical experiments

In this section, some experiments on simulation datasets and real datasets are conducted respectively, by
comparing lp SVR with l2 SVR, l1 SVR. Note that, the performance of each method depend on the parameters (C,
p and ε in lp SVR; C and ε in l2 SVR and l1 SVR). Therefore, these parameters should be adjusted properly. In
our experiments, the best value of these parameters are chosen by five-fold cross validation. C is obtained through
searching in the range 2−7 − 24, p is chosen from 0.1 − 0.9 and ε is chosen from 0.01 to 0.1.

In order to evaluate the performance of algorithms, some evaluation criteria ([19], [20]) commonly used should
be introduced in the following:

MS E =
1
m

m∑
i=1

( f (xi) − yi)
2,MAPE =

m∑
i=1

|yi− f (xi)|
|yi |

m
× 100%,NMS E =

m∑
i=1

(yi − f (xi))2

m∑
i=1

(yi − ȳ)2
,

R2 =

m∑
i=1

( f (xi) − ȳ)2

m∑
i=1

(yi − ȳ)2
, r =

m
m∑

i=1
f (xi)yi −

m∑
i=1

f (xi)
m∑

i=1
yi

√
(m

m∑
i=1

f (xi)2 − (
m∑

i=1
f (xi))2)(m

m∑
i=1

y2
i − (

m∑
i=1

yi)2)

,
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where m is the number of testing samples, f (xi) denotes the predict value of xi and ȳ is the average value of
y1, · · · , yl.

5.1. Simulation datasets
The simulation datasets are generated as follows. The inputs xi ∈ Rn are stochastic vectors independently

generated in [0, 1], and the numbers of samples and features are described in Table 1. The outputs are determined

Table 1. Description of simulation datasets
Datasets No. of samples No. of features
1 400 50
2 500 60
3 500 50
4 100 120

by some simple functions. For example, in dataset 1, the output yi is given by

yi = 2[xi]1 + 3[xi]2 + 4[xi]3 + 0.1 × rand(1);

In dataset 2,

yi = 8[xi]1 − 7[xi]5 + 6[xi]9 − 5[xi]13 + 4[xi]20 − 3[xi]31 + 2[xi]45 − [xi]49 + rand(1);

In dataset 3,
yi = 100[xi]3 + 20[xi]17 + 3[xi]21 + 0.4[xi]36 + 0.05[xi]44;

In dataset 4,
yi = 2[xi]1 + 3[xi]2 + 4[xi]3 + rand(1).

The results on four datasets are illustrated in Table 2. We show the effectiveness of lp SVR from two aspects:
feature selection and regression accuracy. On the one hand, from the data in 3th column, it is easy to see that
lp SVR selects the minimal features. On the other hand, the data in 4th-8th column show that lp SVR derives
the smallest MSE, MAPE, NMSE, and the largest R2, r among these methods in most datasets. This indicates
that the statistical information in these datasets is well presented by our lp SVR with fairly small feature sets and
regression errors.

Table 2. Results on simulation datasets
Datasets Regressor No. of selected MSE MAPE NMSE R2 r

features
1 lp SVR 3 0.0008 0.0064 0.0003 1.0080 0.9999

l2 SVR 50 0.0017 0.0084 0.0006 1.0059 0.9997
l1 SVR 3 0.0008 0.0062 0.0003 0.9963 0.9999

2 lp SVR 8 0.0811 0.1561 0.0044 0.9848 0.9978
l2 SVR 60 0.0871 0.1623 0.0048 0.9999 0.9976
l1 SVR 16 63.0302 5.6449 3.4472 3.6134 0.7724

3 lp SVR 5 0.0763 0.0346 0.0221 0.9596 0.9889
l2 SVR 50 0.1038 0.0393 0.0301 0.9622 0.9849
l1 SVR 16 0.3486 0.0802 0.1011 1.0428 0.9879

4 lp SVR 3 0.1222 0.0780 0.0377 0.9023 0.9843
l2 SVR 120 1.2196 0.2420 0.3758 0.6735 0.7999
l1 SVR 3 0.1420 0.0734 0.0438 0.7510 0.9875

5.2. Real datasets
For further evaluation of our method, we choose four real datasets: ”bodyfat”, ”cpusmall”, ”housing” and

”insurance”, which are commonly used in testing machine learning algorithms. More detailed description can be
found in Table 3.

Table 4 lists the results of three methods on four real datasets. It can be seen that our lp SVR can accomplish
the desired feature selection and achieve the good regression accuracy. The reason maybe that it can balance these
two aspects better than the other two methods by adjusting the parameter p.
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Table 3. Description of real datasets
Datasets No. of samples No. of features
bodyfat 252 14
cpusmall 500 12
housing 452 13
insurance 500 85

Table 4. Results on real datasets
Datasets Regressor No. of selected MSE MAPE NMSE R2 r

features
bodyfat lp SVR 1 0.0000 0.0017 0.0004 1.0017 0.9998

l2 SVR 14 0.0000 0.0016 0.0004 1.0041 0.9998
l1 SVR 1 0.0305 0.0981 1.1352 0.0550 0.1710

cpusmall lp SVR 8 0.0010 0.0124 0.1508 0.7845 0.9354
l2 SVR 12 0.0009 0.0122 0.1445 0.7973 0.9378
l1 SVR 2 0.0992 0.1625 15.4089 14.7173 0.2143

housing lp SVR 3 0.0097 0.0446 0.2607 0.7223 0.8607
l2 SVR 13 0.0097 0.0416 0.2587 0.7710 0.8641
l1 SVR 3 0.1372 0.2673 3.6738 3.7220 0.7769

insurance lp SVR 9 2.3464 0.1123 0.0141 0.9411 0.9933
l2 SVR 83 2.8524 0.1121 0.0172 0.9916 0.9917
l1 SVR 2 3.3524 0.1556 0.0198 0.9070 0.9927

6. Conclusions

For regression problems, a new model lp SVR is proposed in this paper. The main contribution is that the
desired feature selection and good regression performance are implemented simultaneously by introducing the
adaptive norms – lp-norm, where the parameter p can be chosen flexibly in (0, 1) by data. Computational com-
parisons between our lp SVR and other popular methods including l2 SVR and l1 SVR indicate the effectiveness
of our method. We believe that its good performance mainly comes from the fact that the parameter p is adjusted
properly.
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