MULTI-VIEW DEEP METRIC LEARNING FOR IMAGE CLASSIFICATION

Dewei Li? Jingjing Tang"?

Yingjie Tian*3* Xuchan Ju*®

'University of Chinese Academy of Sciences, Beijing 100049, China
Research Center on Fictitious Economy & Data Science,
Chinese Academy of Sciences, Beijing 100190, China
3 Key Laboratory of Big Data Mining and Knowledge Management,
Chinese Academy of Sciences, Beijing 100190, China
4School of Economics and Management, Tsinghua University, Beijing 100083, China
Postdoctoral Programme of Agricultural Bank of China, Beijing 100005, China.

ABSTRACT

In this paper, we propose a new deep metric learning ap-
proach, called MVDML, for multi-view image classification.
Multi-view features can provide more information than single
view, however, it is a challenge to exploit and fuse the com-
plementary information from multiple views. Multiple deep
neural networks are constructed, each corresponds to a view,
to extract nonlinear information from images. The nonlinear
transformation is an improvement on linear transformation of
metric learning. All the original images will be transformed
into a lower-dimensional space. In each new space, the dif-
ference between intra-class distance and inter-class distance
is maximized. To extract information from different views
as much as possible, the difference between different views
of the same image is minimized. The numerical experiments
verify that our model can obtain competitive performance in
image classification and runs faster than the baseline methods.

Index Terms— Metric learning; Multi-view learning;
Deep learning; Neural network

1. INTRODUCTION

Image classification is one of the core problems in computer
vision, with a great number of practical applications included,
such as object detection, analysis of remote sensing images,
recognition of ultrasound liver images, etc. Generally, image
classification aims to classify images according to their visual
contents. The visual contents often contain both interested
object and unrelated background. With the advent of big data
times, research on image classification has been a hot spot
and a kind of promising work. However, there exist many
challenges in this area, including intra-class variance, scale
and viewpoint variation, background clutter, etc., which bring
negative effects to the performance of the current methods.
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Two-sides efforts, multi-view learning and metric learning,
have been made to improve classification accuracy.

Multi-view learning optimizes multiple functions to-
gether, each function corresponds one view, to extract the
information from diverse views as much as possible. In
image processing, multiple feature subsets from differen-
t views are extracted with consideration of the relation in
inter-views. Multi-view learning has been studied exten-
sively with a large number of methods proposed, which
can be classified into three groups: co-training, multiple
kernel learning and subspace learning[l]. Co-training[2]
method optimizes a mutual model on two distinct views
alternately. Multiple kernel learning[3] assigns kernels to
different views and combine the kernels effectively. Sub-
space learning[4, 5] seeks for a latent subspace, which is
shared by different views under the assumption that the
multiple views are generated from the subspace. Metric
learning aims to learn a data-dependent metric M to mea-
sure the distance(squared) between patterns(images) =1,z
as dyr(z1,22) = (v — x2) " M(xy — x2) instead of the
traditional Euclidean distance where M is an identity matrix.
The desired metric should be a positive semidefinite one,
which can be decomposed as M = AT A. The distance can
be rewritten as d (71, 72) = (Az; — Axo) " (Azy — Axy).
In fact, the distance dj, is the Euclidean distance in the trans-
formed space with the linear transformation A. A number of
methods on metric learning have been proposed since 2002,
with one of the earliest work emerged. The principle idea
is minimizing the intra-class distance and maximizing inter-
class distance under the new metric. The research on metric
learning can be divided into two directions: global metric
learning and local metric learning. The work from global
view aims to find a metric to optimize and constrain all the
rules on the entire dataset, representative methods contain-
s MLSI[6], ITML[7], MCML[8]. But the local ones only
implement the criterions on local neighborhood. NCA[9],
LMNNT[10] are classical models in local metric learning. A
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great many methods and surveys have been made on metric
learning [11-16]. The efficiency of metric learning has been
verified in improving the performance of kNN, k-means and
other similarity search methods. Generally, image classifica-
tion can be regarded as a similarity search problem where the
measurement for similarity is critical. Then metric learning
can be applied in image classification for better performance.

In this paper, we propose a novel framework for image
classification. The technique of multi-view learning, metric
learning and deep learning is fused together. For an image set
with multiple-views, metric learning can be exploited to learn
multiple metrics, each corresponds to a single view. Since
metric learning is to learn a linear transformation essentially,
which can be replaced by nonlinear transformation for bet-
ter mapping ability. Deep neural networks(DNNs) are con-
structed to realize the goal of nonlinear mapping due to its
strong ability in extracting features. The difference between
inter-class distance and intra-class distance in every view and
the correlation between different views of the same image are
both maximized. So the discriminative information from dif-
ferent inputs and the view-specific information can be extract-
ed as much as possible. Experiments results have validated
the effectiveness of our new method.

The paper is organized as follows. Section 2 provides the
details of model construction. The experiments are imple-
mented in Section 3. Conclusions are given in Section 4.

2. PROPOSED FRAMEWORK

2.1. The model

Given a multi-view dataset with m training examples from c
classes, T = {T, € R™*™ x Y}V_,, where

7(x1)m7ym)} (D

is the feature set from v-th view and y; € ¥ = {1,2,--- , ¢}
is the label corresponding to each feature input.

To make explicit nonlinear mapping, V' deep neural net-
works are constructed, each for a view. Suppose that the
structure of all the networks are the same, but only different
in the connected weights. Assume there are two indispens-
able layers, input layer and output layer, and L hidden layers
in each network with d; nodes in the [-th hidden layer. For
each training input z,,;, its output of the first layer in the v-
th network is hl;, = s(Wlxz,; + b)), where W, bl are the
linear transformation and bias vector respectively, which will
be learned by our model. And s(-) is a nonlinear active func-
tion. The output can be further simplified as b, = s(W &),
where W = (W}, b1), &y = (x].,1)T. Similar as the tra-
ditional network, the output of the former layer is the input
of the latter layer. So the output of the top hidden layer is
hL = s(WERE=Y 4 bL) = s(WERE™Y). Then the output
zoi = s(WEHTAL). Inspired by the idea of the local model
in [17], a linear/nonlinear mapping that can make intra-class

T, = {(%hyl), (%27@/2), s

distance be smaller than inter-class distance on neighborhood
level is enough for metric learning. For the v—th view, de-
fine two kinds of neighborhood for z,;: intra-class neighbor-
hood S,,;, which contains K neighbors with the same label as
Zyi» and inter-class neighborhood D,,;, which contains K — 1
neighbors with different labels from z,;. Then we construct
the following optimization problem to realize our goal

m L+1
min Ty =) (di(zui) — Cda(z0i)) + A Y IWLP (@)

=1 =1

where
dl sz = K Z ||Z'uz ka||2 (3)
Zyk €Svi

b() = s 3 lzi—zal® @

2\<vi K_1 v vk

2yk €Dyi

denotes local intra-class distance and local inter-class dis-
tance of z,; respectively, with the neighborhood size K and
K — 1 severally. The parameter C' is used to balance intra-
class distance and inter-class distance. The last term in the
problem (2) is used to avoid overfitting. Recent studies in
multi-view learning have demonstrated that maximizing the
correlations of different views can extract complementary
information as much as possible[18]. So the differences be-
tween different views of the same pattern will be minimized
in our model. For the —th input, different views are enforced
to be mapped into a single point, leading to the following
problems

\%
min Jo = Z d(2kis 213) 4)
k=1

Then the framework of multi-view deep metric learning is
established by adding up the above sub-problems

V. m
min T =3 au(di(zu) - Cdalzi)) + Sl
’ v=11=1
. m 1% VvV L+1
+§Z Z d Zkzazh ZZ ” H2 (6)
i=1 k,l=1 v=1 [=1
s.t. ela=1 (N

where the trade-off €, A, i are used to balance different terms
and e is a vector of ones with the length of V.

2.2. Alternative Optimization with gradient descent

To solve the optimization problem with respect to both linear
transformation W and the weight a, alternative optimization
is used to obtain the solution alternately. First, the weight o
is initialized and fixed, then the object function (6) is an un-
constrained problem and gradient descent is adopted to solve
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Fig. 1. The basic structure of our proposed model for image
classification.

problem iteratively. The gradient of the objective function
with respect to W/ is

aJ AN
— = —(dy — Cds) +
oW ; aw;,( 1 = Cdy)
£ — 0 -
52 o d(zhi2) + AW, (®)

For the output layer,

od 2
W;“ =% > (o = 20k) © (2 — 2ip) 9
v 2yl €Svi
od 2
ST = o7 2 (=2 © (2~ 2) (10)
v 2ok €Dy
a !
Wd(zki, 21i) = 2(2vi — 213) © 2u; an
v

wherez!; = o(2,)(hE) Tand o(a) = a ® (1, — a), ais a
vector, 1, is a vector of ones with the same length as a. The
operation ® denotes component-wise multiplication. For the
l—th(1 <[ < L) hidden layer,

6d1 T 6d1

_ (1arl+1
o~ ) g 2
Ody — oyyq\ 7 Odo
o = W) g 13)
0 .
a[f[/l d(Z]ﬂ, zli) = (W’[l]'f‘l)TWd(zki’ zli) (14)

v

and z; will be changed as

2 =0(20) ©o(hl) @ oaL)(BEHT  (15)

with the definition h%; = x,;. Then the linear transformation
will be updated by

0J

W=l g 2L
oWl

p p (16)
After obtaining the weight matrix W, the following Lagrange
problem is constructed

F=J—v"a-1) (17)
then « can be calculated based on the KKT condition,

pe+e' ke —Vk
o0o=——-

v (18)

m

where k = (K1, ,ky) € RV and Kk, = Y (di(2y;) —

=1
Cdy(zyi)),v =1,---, V. The detailed procedure of MVDM-
L is summarized in Algorithm 1.

Algorithm 1 Multi-view deep metric learning for image clas-
sification(MVDML)

Input: The training set 7'; The penalty parameters C e, A, p,
gradient step-size 7, maximum of iterations 7.

Output: The target weights Wl v = 1,--- V.l =
1,---,L+1;

Procedure:

1. Let ¢ = 1 and initialize Wé as identity matrix;

2. Update W!,v = 1,---,V,l = 1,--- ,L + 1 alternately
using gradient ascent method by (16);

3. Update o by (18) and calculate the value of objective
function (6) as J;;

4. Lett =t+1,ift > Tor|Jy — Ji_1| < (0 < < 1),
stop iteration and obtain the output, otherwise go to step 2.

2.3. Predict new images

Given a test image with V' views, all of its views will be input
to corresponding networks learned from the training images.
Suppose that the outputs are 27, 29, - - - , zy and their nearest
neighbors from the c-th class of the train set can be found,
21,25, , 2. The distance between the test image and the

1%
nearest neighbor in c-th class is d° = > a,l/z, — 20[|3. So

v=1

the label of the test image is y = arg min d°.
C

3. EXPERIMENTS

In the section, we will make numerical experiments to
validate the effectiveness of our method in image classi-
fication. Three public and classical image datasets, Cal-
tech, Galaxy and GRAZ02, were selected to make com-
parisons. The Caltech dataset contains 600 images from
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six classes, including airplane, car, face, leave, motorbike
and background. The dataset was collected by the stu-
dent from California Institute of Technology. The Galaxy
dataset(http://zoo1l.galaxyzoo.org) contains 522 galaxy im-
ages with three kinds of shapes, edge-on, elliptical and spiral.
The GRAZ02 dataset[19] consists of four classes of images,
bike, car, person and background(Environment without bike,
car or person). Three new image datasets were extended from
GRAZ02, including Bike, Car and Person, each of which
contains two classes, itself and background. Two common
used feature extraction methods, HOG(Histogram of Orient-
ed Gradient) feature[20] and LBP(Local binary pattern)[21],
were used to construct two views for every image. Our
method was compared with four single-view methods, in-
cluding kNN with Euclidean distance, MCML, LMNN and
ITML. For our model, the neural networks were all designed
with three layers, input layer, one hidden layer and output
layer. There are 500, 100 and 50 neural nodes in the three
layers respectively. The penalty parameters C, A, e, u were
all set to be 1. The learning rate 1 was set as 0.01. Three-fold
crossvalidation method was used to select the best parameters
for each model. The activate function is sigmoid function.

Table 1. Classification error rates on single view and multi-

view
Datasets | View Euc MCML LMNN ITML MVDML
Caliech | Single 113550 7703 B0E22  78E29  \
60086y 182408 153428 150420 11.840.6
Multiple 11.345.0 70415  7.5+17  63+1.8 63403
Galaxy | Single 19226 140E44 142534 140E34
(52288 € 205+34 205432 211409 157413
Multiple 19.242.3  13.243.0 142429 140444 117403
. 582430 553120 536127 579426 \
%12’38%2)2 smgl‘e 513425 500441 383421 525458
Multiple 57.743.2  52.5+4.8 483406 589437 428415
bike | Single J01E26 306E19  38BEST I6BELS |
(4582) € 3l6+54 32412 313427 316408
Multiple 40.142.4 302424 317417 358420 32.8429
A 430E49 395E15 428E18 412E40
car Single
(80082) 40404 39311 359430 367x17 \
Multiple 42.644.9  37.7+1.5 365419 407441 38.042.1
serson | Single J69E43  35ELS 303E09 3I2EE |
0182) 359431 352412 320411 342436 \
Multiple 36.844.5 27.2+1.8 288420 30.745.1 28.442.0

The average error rates of each method on the six dataset-
s are shown in Table 1. For each dataset, the first line and
second line denotes the results on HOG and LBP feature re-
spectively. For the baseline methods, the two features were
combined into a long feature vector and the corresponding
results are shown on the third line. The lowest error rates
of multi-view are in boldface type. It can be seen that our
method performs best on three datasets and second on another
datasets. For all the selected datasets, our model obtains com-
petitive performance with the baseline models. We compared
the CPU time of different models on three datasets and the re-
sults are provided in Table 2. For MCML, LMNN and ITML,
the former two times denotes HOG and LBP respectively and
the third denotes the time on multi-view situation. It is obvi-

Table 2. CPU time of different methods(seconds).

Datasets MCML LMNN ITML MVDML
Caltech 605+685/2056 313+368/533 119+97/154 49s
Galaxy 427+375/1783 93+357/172 119+113/133 44s

GRAZ02 1032+929/4210 82+474/155 121+107/172 67s

Table 3. The nearest neighbors for some examples in Caltech.

(AR I
T =

ously that our approach runs much faster than the three previ-
ous models. We selected four query images from the Caltech
dataset and provide their nearest neighbors in kNN with Eu-
clidean distance and MVDML. The results are given in Tabel
3. For each query image in the left column, its nearest neigh-
bors search by Euclidean distance from HOG and LBP rep-
resentation are the second and third images in the same row.
The last two images are the nearest pair found by MVDML.

4. CONCLUSIONS

In this paper, a novel framework is proposed to improve the
performance of kNN on image classification, with the tech-
nique of multi-view learning, deep learning and metric learn-
ing embedded. For each image with multiple views, it is
important but hard to extract complementary information as
much as possible and combine the information in a harmo-
nious way. Multiple deep neural networks are constructed,
each corresponds to a single view, to make nonlinear transfor-
mation for the inputs. In output space, the model aims to max-
imize the difference between intra-class distance and inter-
class distance. Also the difference between different views
of the same image is minimized to achieve the goal of max-
imization of the correlation between distinct views. Experi-
ments on benchmark datasets demonstrate that our method is
effective in classifying images with multi-views in much less
time than compared approaches.
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