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Abstract Large-scale problems have been a very active
topic in machine learning area. In the time of big data, it is
a challenge and meaningful work to solve such problems.
Standard SVM can make linear classification on large-
scale problems effectively, with acceptable training time and
excellent prediction accuracy. However, nonparallel SVM
(NPSVM) and ramp loss nonparallel SVM (RNPSVM) are
proposed with better performance than SVM on benchmark
datasets. It is motivated to introduce NPSVMs into the area
of large-scale issues. In this paper, we propose large-scale
linear NPSVMs, solved by the alternating direction method
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of multipliers (ADMM), to handle large-scale classification
problems.ADMMbreaks large problems into smaller pieces,
avoiding solving intractable problems and leading to higher
training speed. The primal problems of NPSVM are con-
vex and differentiable, and they can be managed directly by
ADMM.But the objective functions of RNPSVM, composed
of convex ones and concave ones, should first be processed
by CCCP algorithm and transformed as a series of convex
programs. Then, we apply ADMM to solve these programs
in every iteration. Experiments of NPSVMs on large-scale
problems verify that the algorithms can classify large-scale
tasks effectively.

Keywords Large-scale · Nonparallel SVM · Ramp loss
function · ADMM

1 Introduction

Support vector machines (SVMs), constructed on the bases
of statistical learning theory and VC-dimensional theory,
are popular methods in handling problems of classification,
regression, clustering, etc. SVM has attracted many interests
since its original proposed (Cortes and Vapnik 1995; Vap-
nik 1998, 2000; Deng and Tian 2004; Deng et al. 2012).
As a hot spot in data mining, SVM has been applied in
many real applications (Akbani et al. 2004; Weston et al.
1999; Bradley and Mangasarian 1998; Guyon et al. 2002;
Zhang et al. 2006; Tan et al. 2010). For a binary classification
problem, SVM seeks for two best parallel support hyper-
planes with maximal margin by constructing and solving a
quadratic programming problem with hinge loss function.
Recently, SVM has been improved in two sides, including
hyperplanes and loss function. To advance the generaliza-
tion ability of SVM, twin support vector machine (TWSVM)
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(Jayadeva et al. 2007; Shao et al. 2011; Tian et al. 2014a)
was proposed to find two nonparallel hyperplanes, satisfying
that each hyperplane be close to its corresponding class as
much as possible and far from the other class beyond one
unit distance. TWSVM employs the information of all the
inputs to make exacter prediction, and it is nearly four time
faster than SVMsince it solves two smaller convex problems.
TWSVMshave been researchedwidely owing to their advan-
tages in both classification performance and training speed
(Qi et al. 2013, 2012; Kumar and Gopal 2008; Arun Kumar
and Gopal 2009; Naik et al. 2010). Based upon TWSVM, the
nonparallel support vector machine (NPSVM) (Tian et al.
2014b, c, 2016; Tian and Ping 2014; Qi et al. 2014) was
presented to overcome the drawbacks existing in TWSVMs,
including computing inversematrices, lack of sparseness, not
considering structural risk, etc. NPSVM applies hinge loss
function and ε−insensitive loss function to make improve-
ments on TWSVM. But TWSVM and NPSVM are both
sensitive to outliers. Ramp loss function has been introduced
into NPSVM to replace the hinge loss function, and then a
new robust NPSVM, called RNPSVM, was proposed (Liu
et al. 2015). RNPSVM can eliminate the negative impact of
outliers and noises and obtain higher classification accuracy
with less support vectors. CCCP algorithm is implemented
to solve RNPSVM since the primal problems are nonconvex
and nondifferentiable.

However, in the big data era, some applications appear
with a large number of instances or high-dimensional features
which cannot be managed by traditional quadratic program-
ming problems (QPPs). Within the scope of SVM, many
algorithms for large-scale problems are proposed. LIBLIN-
EAR is a fast method for large-scale linear classification (Fan
et al. 2008). It applies trust region method for optimization
and runs much faster than QPPs when dealing with large-
scale datasets. Many applications have been benefited from
LIBLINEAR (Deng et al. 2010; Maas et al. 2011; Ma et al.
2009). However, up to now, the research on large-scale prob-
lems using nonparallel support vector machines is not active.
L1-NPSVM (Tian and Ping 2014) applies dual coordinate
descent(DCD) method to solve NPSVM, and the experi-
ments on large-scale datasets have shown its strong ability
in classifying such problems. DCNPSVM (Tian et al. 2016)
constructs a multi-level structure with a division step and a
combination step. Large-scale original problems have first
been divided into smaller subproblems, and then the sub-
solutions are combined to form the final solution for the large
problems. Themethod converges quickly and performs better
than state-of-the-art methods. Recently, the alternating direc-
tion method of multipliers (ADMM) (Boyd et al. 2011) was
studied comprehensively and claimed to be suited to convex
optimization. ADMM solves convex problems by breaking
them into smaller-scale pieces, each of which can be solved
more efficiently. The characteristics make great contribution

to solving large-scale problemswell. ADMMhas been exten-
sively applied in many areas (Li et al. 2012; Bhaskar et al.
2013; Kasiviswanathan et al. 2011).

In this paper, ADMM is applied for linear NPSVM and
RNPSVM to solve large-scale problems in light of their
advantages in classification. ADMM can solve the primal
problems of NPSVM directly for they are both convex ones.
For RNPSVM, CCCP procedure is first applied to make the
primal problems convex and differentiable. Then, a sequence
of convex QPPs is obtained and every transformed problem
can be solved by ADMM. Our methods have the following
advantages: (1) They can solve large-scale problems effec-
tively,with thefirst time to introduceADMMinto nonparallel
SVMs; (2) RNPSVM with ADMM is insensitive to noises
and outliers; (3) They have the property of sparseness to get
faster prediction for test points. Numerical experiments are
made to verify the ability of our novel algorithms.

The paper is structured as follows. Background on the
standard SVM, NPSVM and RNPSVM are introduced in
Sect. 2. Section3 proposes ADMM for linear NPSVM, and
Sect. 4 presents ADMM for RNPSVM with CCCP. Exper-
imental results and conclusions are summarized in Sects. 5
and 6, respectively.

2 Background

In this section, we will give a brief introduction of some pre-
vious works, including standard SVM, NPSVM, RNPSVM
and ADMM. The main principles and analyses will be pro-
vided.

2.1 Standard SVM

Consider a binary classification problem with the following
training set

T = {(x1,+1), . . . , (xp,+1), (xp+1,−1), . . . , (xp+q ,−1)},
(1)

where xi ∈ Rn, i = 1, . . . , p + q. The standard SVM seeks
for the best decision hyperplanes f (x) = w�x + b = 0 by
solving a convex QPP as follows

min
w,b,ξ

1

2
‖w‖2 + C

p+q∑

i=1

ξi (2)

s.t. yi (w
�xi + b) ≥ 1 − ξi , i = 1, . . . , p + q, (3)

ξi ≥ 0, i = 1, . . . , p + q (4)

The above problem can be reformulated as an unconstrained
convex problem with hinge loss function
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Fig. 1 A ramp loss function can be decomposed into the sum of a hinge loss function and a concave loss function. a Ramp loss. b Hinge loss. c
Concave loss

min
w,b,ξ

1

2
‖w‖2 + C

p+q∑

i=1

max(0, 1 − yi (w
�xi + b)) (5)

The classical hinge loss function Hε(z) = max(0, ε − z) �
[ε − z]+(Fig. 1b) penalizes the points which invade the mar-
gin between two support hyperplanes. Standard SVM has
been extensively studied since it has graceful formation and
excellent performance in classification. However, it has two
drawbacks related to hinge loss function. First, its predic-
tion is only decided by the support vectors, resulting in
insufficient extraction of the data information. Second, the
classification performance will decline when there exist out-
liers because SVM is sensitive to outlier patterns.

2.2 NPSVM

Instead of solving a single QPP, NPSVM aims to find two
nonparallel hyperplanes f+(x) = w�+x + b+ = 0 and
f−(x) = w�−x + b− = 0 for the classification problem
with the training set (1) which lead to the construction of
two smaller convex QPPs

min
w+,b+

1

2
(‖w+‖2 + b2+) + C1

p∑

i=1

Iε( f+(xi ))

+C2

p+q∑

j=p+1

H1(− f+(x j )) (6)

and

min
w−,b−

1

2
(‖w−‖2 + b2−) + C3

p+q∑

i=p+q

Iε( f−(xi ))

+C4

p∑

j=1

H1( f−(x j )) (7)

where Ci ≥ 0, i = 1, . . . , 4 are penalty parameters, and

Iε(z) = max(0, |z| − ε) (8)

is the ε-insensitive(ε > 0) loss function (Fig. 2b). In fact,
Iε(z) is the sum of two hinge loss functions H−ε(−z) and
H−ε(z). NPSVM is an improved version of TWSVM. Com-
pared with TWSVM, NPSVM has several advantages in the
following aspects: (1) It does not need to compute inverse
matrices, making it tractable for large-scale problems; (2) It
absorbs all the data information, but not lose sparseness; (3)
NPSVM is a generalized version of TWSVM and can degen-
erate to TWSVM when the proper parameters are selected;
(4) The principle of structural risk minimization is imple-
mented. But similar as traditional SVM, NPSVM still has
the drawbacks of being sensitive to outliers.

2.3 RNPSVM

RNPSVM is a robust version of NPSVM which is proposed
to weaken the negative impact of noise points. It constructs
two problems

min
w+,b+

J+(w+, b+) = 1

2
(‖w+‖2 + b2+)

+C1

p∑

i=1

Lε,t ( f+(xi ))

+C2

p+q∑

j=p+1

Rs(− f+(x j )) (9)
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Fig. 2 A ε-insensitive ramp loss function can be decomposed into the sum of a convex ε-insensitive loss function and a concave loss function. a
ε-insensitive Ramp loss. b ε-insensitive loss. c Concave loss

and

min
w−,b−

J−(w−, b−) = 1

2
(‖w−‖2 + b2−)

+C3

p+q∑

i=p+q

Lε,t ( f−(xi ))

+C4

p∑

j=1

Rs( f−(x j )) (10)

where Ci ≥ 0, i = 1, . . . , 4 are penalty parameters, Lε,t (z)
is ε-insensitive ramp loss function (Fig. 2a),

Lε,t (z) =
⎧
⎨

⎩

t − ε, |z| > t
|z| − ε, ε ≤ |z| ≤ t
0, |z| < ε

(11)

and Rs(z) is standard ramp loss function (Fig. 1a)

Rs(z) =
⎧
⎨

⎩

0, z > 1
1 − z, s ≤ z ≤ 1
1 − s, z < s

(12)

Due to the nonconvexity of ramp loss function, RNPSVM
cannot be directly solved by traditional interior point or trust
region reflective method. CCCP is an efficient solver to deal
with such problem with the objective function formulated as
the sum of a convex function and a concave function.

2.4 ADMM

ADMM is proposed to solve convex problems with much
higher speed than traditional methods. It splits convex prob-
lems into smaller ones, all of which can be handled in short
time in virtue of much smaller scale.

The algorithm deals with such problems as below

min
u,v

f (u) + g(v) (13)

s.t. Fu + Gv = c (14)

where f, g are convex function with respect to different
variables, u ∈ Rnu , v ∈ Rnv and F,G are matrices with
appropriate dimension. The augmented Lagrangian can be
formed as

Lρ(u, v, λ) = f (u) + g(v) + λ�(Fu + Gv − c)

+ ρ

2
‖Fu + Gv − c‖2 (15)

Defining the residual r = Fu + Gv − c and the scaled dual
variable h = 1

ρ
λ, then

Lρ(u, v, λ) = f (u) + g(v) + λ�r + ρ

2
‖r‖2 (16)

= f (u) + g(v) + ρ

2
‖r + 1

ρ
λ‖2 − 1

2ρ
‖λ‖2

(17)

= f (u) + g(v) + ρ

2
‖r + h‖2 − ρ

2
‖h‖2 (18)

The solution of the primal problems (13), (14) can be
obtained by the following iterations

uk+1 = argmin
u

( f (u) + ρ

2
‖Fu + Gvk − c + hk‖2) (19)

vk+1 = argmin
v

(g(v) + ρ

2
‖Fuk+1 + Gv − c + hk‖2)

(20)

hk+1 = hk + Fuk+1 + Gvk+1 − c (21)

where ρ > 0. The iterations stop at a maximum iteration
number or a predefined threshold. Define the primal residual
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rk+1 = Fuk+1 + Gvk+1 − c and the dual residual sk+1 =
ρF�G(vk+1 − vk). Then, a reasonable termination criterion
is that ‖rk‖ ≤ εkp, ‖sk‖ ≤ εkd , where 0 < εkp, ε

k
d � 1

are feasibility tolerances for the primal and dual feasibility
conditions, respectively. The tolerances can be set using an
absolute tolerance ε1 and relative tolerance ε2,

εkp = √
nhε1 + ε2 max{‖Auk‖, ‖Bhk‖, ‖c‖} (22)

εkd = √
nuε1 + ε2ρ‖A�hk‖ (23)

where nu, nh denotes the dimension of u and h, respectively.

3 ADMM for linear NPSVM

Since the primal problems of NPSVM are convex, they can
be solved by ADMM directly. In linear case, NPSVM can be
easily converted into the standard formulation of ADMM.
Then, it can handle large-scale problems because the kernel
matrix does not needed to be computed. The primal problems
(6) and (7) can be written in explicitly formulation with the
sum of regularization term and the hinge loss function.

min
w+,b+

1

2
(‖w+‖2 + b2+) + C1

p∑

i=1

([w�+xi + b+ − ε]+

+ [−w�+xi − b+ − ε]+)

+C2

p+q∑

i=p+1

[w�+x j + b+ + 1]+ (24)

and

min
w−,b−

1

2
(‖w−‖2 + b2−) + C3

p+q∑

i=p+1

([w�−xi + b− − ε]+

+ [−w�−xi − b− − ε]+)

+C4

p∑

i=1

[1 − w�−x j − b−]+ (25)

Introducing additional variables α+, β+ ∈ Rp, γ− ∈ Rq

and α−, β− ∈ Rq , γ+ ∈ Rp, the above problems can be
reformulated as

min
w+,b+,α+,β+,γ−

1

2
(‖w+‖2 + b2+) + C1

p∑

i=1

([α+,i ]+ + [β+,i ]+)

+C2

p+q∑

i=p+1

[γ−,i ]+ (26)

s.t. α+,i = w�+xi + b+ − ε, i = 1, . . . , p, (27)

β+,i = −w�+xi − b+ − ε, i = 1, . . . , p,

(28)

γ−, j = w�+x j + b+ + 1, j = p + 1, . . . , p + q (29)

and

min
w−,b−,α−,β−,γ+

1

2
(‖w−‖2+b2−)

+C3

p+q∑

i=p+1

([α−,i ]+ + [β−,i ]+)

+C4

p∑

i=1

[γ+,i ]+ (30)

s.t. α−,i = w�−xi + b− − ε,

i = p + 1, . . . , p + q, (31)

β−,i = −w�−xi − b− − ε,

i = p + 1, . . . , p + q, (32)

γ+, j = 1 − w�−x j − b−, j = 1, . . . , p (33)

For simplicity, the above problems can be rewritten in matrix
formation

min
w+,b+,α+,β+,γ−

1

2
(‖w+‖2+b2+)+C1e

�+([α+]++[β+]+)

+C2e
�−[γ−]+ (34)

s.t. α+ = Aw+ + e+b+ − εe+, (35)

β+ = −Aw+ − e+b+ − εe+, (36)

γ− = Bw+ + e−b+ + e− (37)

and

min
w−,b−,α−,β−,γ+

1

2
(‖w−‖2 + b2−)+C3e

�−([α−]+ + [β−]+)

+C4e
�+[γ+]+ (38)

s.t. α− = Bw− + e−b− − εe−, (39)

β− = −Bw− − e−b− − εe−, (40)

γ+ = −Aw− − b− + e+ (41)

where A = (x1, x2, . . . , xp)�, B = (xp+1, xp+2, . . . ,

xp+q)
�. For any column vector z ∈ Rd , [z]+ = ([z1]+, . . . ,

[zd ]+)�. If let u+ = (w�+, b+)�, z+ = (α�+, β�+ , γ �− )�, the
problems (34)–(37) can be transformed as

min
u+,z+

1

2
u�+u+ + C�+[z+]+ (42)

s.t. Tu+ + z+ = c+ (43)
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whereC+ = (
C1e�+,C1e�+,C2e�−

)
, c+ = (−εe�+,−εe�+, e�−

)

and

T =

⎛

⎜⎜⎝

−A −e�+
A e�+

−B −e�−

⎞

⎟⎟⎠ (44)

Similarly, the problems (38)–(41) can be transformed as

min
u−,z−

1

2
u�−u− + C�−[z−]+ (45)

s.t. Qu− + z− = c− (46)

where C−= (
C3e�−,C3e�−,C4e�+

)
, c+= (−εe�−,−εe�−, e�−

)

and

Q =

⎛

⎜⎜⎝

−B −e�−
B e�−
A e�+

⎞

⎟⎟⎠ (47)

The procedures of solving problems (42), (43) and (43), (45)
are shown in Algorithms 1 and 2, respectively.

Algorithm 1 ADMM for the problem (42), (43)
1. Given the training set (1) and the parameters ε,Ci , i = 1, . . . , 4,

initialize u0+, z0+, h0+, set k = 0, convergence threshold δ(0 < δ �
1);

2. Solve the problems

uk+1+ = argmin
u+

(
1

2
u�+u+ + ρ

2
‖Tu+ + zk+ − c+ + hk+‖2

)
(48)

zk+1+ = argmin
z+

(
C�+[z+]+ + ρ

2
‖Tuk+1+ + z+ − c+ + hk+‖2

)

(49)

hk+1+ = hk+ + Tuk+1+ + zk+1+ − c+ (50)

and get the solution uk+1+ , zk+1+ ;
3. Compute the primal and dual residual. If ‖Tuk+1+ + zk+1+ − c+‖ >

δ, ‖ρT�(zk+1+ − zk+)‖ > δ, set k = k + 1, go to step 2.

Then we can construct linear NPSVM with ADMM in
Algorithm 3.

4 ADMM for linear RNPSVM with CCCP

Since the primal problems of RNPSVM are not convex,
ADMM cannot deal with them directly. It is distinct that
Lε,t (z) and Rs(z) can be decomposed as follows

Lε,t (z) = Iε(z) − It (z) (55)

Rs(z) = H1(z) − Hs(z) (56)

Algorithm 2 ADMM for the problem (45), (46)
1. Given the training set (1) and the parameters ε,Ci , i = 1, . . . , 4,

initialize u0−, z0−, h0−, set k = 0, convergence threshold δ(0 < δ �
1);

2. Solve the problems

uk+1− = argmin
u−

(
1

2
u�−u− + ρ

2
‖Qu− + zk− − c− + hk−‖2

)

(51)

zk+1− = argmin
z−

(
C�−[z−]+ + ρ

2
‖Quk+1− + z− − c− + hk−‖2

)

(52)

hk+1− = hk− + Quk+1− + zk+1− − c− (53)

and get the solution uk+1+ , zk+1+ ;
3. If ‖Quk+1− + zk+1− − c−‖ > δ, ‖ρQ�(zk+1− − zk−)‖ > δ, set k =

k + 1, go to step 2.

Algorithm 3 Linear NPSVM
1. Given the training set (1) and the parameters ε,Ci , i = 1, . . . , 4,

initialize u0+, z0+, h0+, u0−, z0−, h0−, set k = 0, convergence thresh-
old δ(0 < δ � 1);

2. Use Algorithm 1 and 2 to get the solutions u∗+, z∗+, u∗−, z∗−;
3. The label of a new point x ∈ Rn is predicted by

label = arg min
k=+,− |w�

k x + bk | (54)

where · is the perpendicular distance of point x from the planes
w�
k x + bk = 0, k = +,−.

The geometric explanations of the above two decompositions
are provided in Figs. 1 and 2, respectively. Then the problems
(9) and (10) can be reformulated as

min
w+,b+

J+(w+, b+) = P̌ + P̂ (57)

min
w−,b−

J−(w−, b−) = Ň + N̂ (58)

where

P̌ = 1

2
(‖w+‖2 + b2+) + C1

p∑

i=1

Iε( f+(xi ))

+C2

p+q∑

j=p+1

H1(− f+(x j )) (59)

P̂ = −C1

p∑

i=1

It ( f+(xi )) − C2

p+q∑

j=p+1

Hs(− f+(x j )) (60)

and

Ň = 1

2
(‖w−‖2 + b2−) + C3

p+q∑

i=p+q

Iε( f−(xi ))
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+C4

p∑

j=1

H1( f−(x j )) (61)

N̂ = −C3

p+q∑

i=p+q

It ( f−(xi )) − C4

p∑

j=1

Hs( f−(x j )) (62)

It can be seen that P̌, Ň are convex functions and P̂, N̂ are
concave functions. Then, the problems (57) and (58) can
both be solved by CCCP algorithm. The detailed solving
procedures are seen in Algorithms 4 and 5.

Algorithm 4 CCCP for the problem (57)
1. Given the training set (1) and the parameters ε, t, s,Ci , i =

1, . . . , 4, initialize w0+, b0+, set k = 0, convergence threshold
δ(0 < δ � 1);

2. Solve the problems

min
w+,b+

P̌(w+, b+) + P̂ ′(wk+, bk+) · (w+, b+) (63)

and get the solution wk+1+ , bk+1+ ;
3. If ‖wk+1+ − wk+‖ > δ, ‖bk+1+ − bk+‖ > δ, set k = k + 1, go to step

2.

Algorithm 5 CCCP for the problem (58)
1. Given the training set (1) and the parameters ε, t, s,Ci , i =

1, . . . , 4, initialize w0−, b0−, set k = 0, convergence threshold
δ(0 < δ � 1);

2. Solve the problems

min
w−,b−

Ň (w−, b−) + N̂ ′(wk−, bk−) · (w−, b−) (64)

and get the solution wk+1− , bk+1− ;
3. If ‖wk+1− − wk−‖ > δ, ‖bk+1− − bk−‖ > δ, set k = k + 1, go to step

2.

The objective functions of (63) and (64) are both convex,
and then they can be solved byADMM.Rewrite the problems
in explicit formulation

min
w+,b+,α+,β+,γ−

1

2
(‖w+‖2 + b2+)

+C1

p∑

i=1

([α+,i ]+ + [β+,i ]+)

+C2

p+q∑

j=p+1

[γ−, j ]+

+
p∑

i=1

θi (w
�+xi + b+)

+
p+q∑

j=p+1

δ j y j (w
�+x j + b+) (65)

s.t.α+,i = w�+xi + b+ − ε, i = 1, . . . , p, (66)

β+,i = −w�+xi − b+ − ε,

i = 1, . . . , p, (67)

γ−, j = w�+x j + b+ + 1,

j = p + 1, . . . , p + q (68)

and

min
w−,b−,α−,β−,γ+

1

2
(‖w−‖2 + b2−)

+C3

p+q∑

j=p+1

([α−, j ]+ + [β−, j ]+)

+C4

p∑

i=1

[γ+,i ]+

+
p+q∑

j=p+1

θ j (w
�−x j + b−)

+
p∑

i=1

δi yi (w
�−xi + b−) (69)

s.t.α−, j = w�−x j + b− − ε,

j = p + 1, . . . , p + q, (70)

β−, j = −w�−x j − b− − ε,

j = p + 1, . . . , p + q, (71)

γ+,i = 1 − w�−xi − b−, i = 1, . . . , p (72)

where

θi = −C1
∂ It ( f+(xi ))

∂ f+(xi )

=
⎧
⎨

⎩

−C1, if f+(xi ) > t
C1, if f+(xi ) < −t
0, otherwise

, i = 1, . . . , p (73)

θ j = −C3
∂ It ( f−(x j ))

∂ f−(x j )

=
⎧
⎨

⎩

−C3, if f−(xi ) > t
C3, if f−(xi ) < −t
0, otherwise

, i = p + 1, . . . , p + q

(74)

and

δi = −C4yi
∂Hs(yi f−(xi ))

∂ f−(xi )

=
{
C4, if yi f−(xi ) < s
0, otherwise

, i = 1, . . . , p, (75)
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δ j = −C2y j
∂Hs(y j f+(x j ))

∂ f+(x j )

=
{
C2, if y j f+(x j ) < s
0, otherwise

, j = p + 1, . . . , p + q,

(76)

Let θ+ = (θ1, . . . , θp), θ− = (θp+1, . . . , θp+q), δ+ =
(δ1, . . . , δp), δ− = (δp+1, . . . , δp+q), the above problems
in matrix expression are

min
u+,z+

1

2
u�+u+ + κ�+u+ + C�+[z+]+ (77)

s.t. Tu+ + z+ = c+ (78)

and

min
u−,z−

1

2
u�−u− + κ�−u− + C�−[z−]+ (79)

s.t. Qu− + z− = c− (80)

where

κ+ =
(
A�θ+ + B�(δ− ◦ YB)

e�+θ+ + e�−(δ− ◦ YB)

)
(81)

κ− =
(
B�θ− + A�(δ+ ◦ YA)

e�−θ− + e�+(δ+ ◦ YA)

)
(82)

After the above transformations, we can use ADMM to solve
RNPSVM in every iteration of CCCP. The algorithms of
ADMM for (77), (78) and (79), (80), named as Algorithms
R5 andR6, are the same asAlgorithms 1 and 2, under the con-
dition that the iterations (48) and (51) should be replaced by

uk+1+ = argmin
u+

(
1

2
u�+u+ + κ�+u+ + ρ

2
‖Tu+

+ zk+ − c+ + hk+‖2
)

(83)

and

uk+1− = argmin
u−

(
1

2
u�−u− + κ�−u− + ρ

2
‖Qu−

+ zk− − c− + hk−‖2
)

(84)

respectively. The comprehensive solving procedures for lin-
ear RNPSVM are displayed in Algorithm 6.

Algorithm 6 Linear RNPSVM
1. Given the training set (1) and the parameters

ε, t, s,Ci , i = 1, . . . , 4, initialize w0+, b0+, z0+, h0+, θ0+, δ0+,
w0−, b0−, z0−, h0−, θ0−, δ0−, set k = 0, convergence threshold
δ(0 < δ � 1);

2. Solve Algorithms R5 and R6, and get the solution
wk+1+ , bk+1+ , wk+1− , bk+1− ;

3. Compute θk+1+ , δk+1+ , θk+1− , δk+1− ;
4. If ‖(θk+1+ , δk+1+ , θk+1− , δk+1− ) − (θk+, δk+, θk−, δk−)‖ > δ, set k =

k + 1, go to step 2, else get the solution (w∗+, b∗+) =
(wk+1+ , bk+1+ ), (w∗−, b∗−) = (wk+1− , bk+1− );

5. A new point x ∈ Rn is predicted by the Eq. (54).

5 Numerical experiments

In this section, experiments on benchmark datasets and large-
scale datasets are made to validate the classification ability
of ADMM on NPSVM and RNPSVM. We compare them
with SVM, solved by LIBLINEAR and ADMM, respec-
tively. All the methods are implemented in MATLAB 2015a
(Lenovo PC, Intel Core I5 processor, 8GBRAM). (The codes
can be downloaded from the Web site: https://github.com/
henryvivid/ADMMforNPSVMs/tree/henryvivid-patch-SV
M.)

Table 1 Error rate on small-scale datasets

Dataset SVM NPSVM RNPSVM

Error (%) SVs (%) Error (%) SVs (%) Error (%) SVs (%)

WPBC (194×34) 23.70±7.16 87.61 19.63±3.64 69.84 18.68±3.34 64.79

Sonar (208×60) 17.88±3.64 79.68 22.17±4.29 83.53 19.67±6.30 82.69

Spectf (267×44) 18.27±7.66 52.62 19.05±4.13 84.65 17.58±3.78 72.10

Heart (270×13) 16.30±4.79 82.31 15.56±6.49 76.85 14.44±5.30 79.07

Bupa_liver (345×6) 31.30±3.34 96.59 31.59±6.01 58.48 29.86±7.71 63.04

Ionosphere (351×34) 10.26±1.24 70.52 9.98±3.37 78.13 9.98±2.70 77.42

Dermatology (366×34) 2.73±1.36 45.63 2.18±2.84 94.06 2.18±2.84 93.37

Votes (435×16) 4.37±1.26 42.59 4.37±1.26 90.34 3.22±1.50 90.34

Australian (690×14) 13.33±2.79 76.04 13.33±4.18 67.61 13.33±3.61 83.91

German (1000×20) 23.10±1.43 70.00 24.10±2.95 73.50 22.80±1.30 53.13
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Fig. 3 Convergence of ADMM on Votes and German. The solid lines
denote the value of the objective function, the norm of primal residual
or dual residual. The dashed lines denote the corresponding tolerance.
For NPSVM and RNPSVM, the blue and red lines denote the value

in positive and negative programming, respectively. a Votes-SVM.
b Votes-NPSVM. c Votes-RNPSVM. d German-SVM. e German-
NPSVM. f German-RNPSVM
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Table 2 Characteristics of
large-scale datasets

Dataset Instance Attribute Class Class distribution

USPS 9298 256 10 {1553, 1269, 929, 824, 852, 716, 834, 792, 708, 821}
a9a 48842 123 2 {11687, 37155}
shuttle 58000 9 7 {45586, 50, 171, 8903, 3267, 10, 13}
codrna 58535 8 2 {19845, 39690}
w8a 64700 300 2 {1479, 48270}
ijcnn1 141691 2 2 {13565, 128126}
skin 245057 4 2 {50859, 194198}
webspam 350000 254 2 {212189, 137811}
covtype 581012 54 7 {211840, 283301, 35754, 2747, 9493, 17367, 20510}

Table 3 Error rates on large-scale datasets

Dataset SVM-L SVM-A NPSVM RNPSVM

Error (%) Time (s) Error (%) Time (s) Error (%) Time (s) Error (%) Time (s)

USPS 6.23±0.43 6.05 5.37±0.49 9.70 4.78±0.34 12.64 4.83±0.33 44.87

a9a 15.13±0.11 5.46 16.82±0.11 2.17 15.13±0.15 5.60 15.09±0.05 47.65

shuttle 8.08±0.07 4.25 2.73±0.27 4.95 2.28±0.15 24.90 2.62±0.23 111.54

codrna 9.88±2.22 3.90 6.11±0.13 0.51 6.13±0.06 6.32 6.16±0.04 11.00

w8a 1.73±0.05 1.15 1.36±0.08 3.30 1.32±0.09 7.40 1.31±0.11 71.52

ijcnn1 8.09±0.12 8.86 6.28±0.15 4.75 8.06±0.09 16.08 7.06±0.11 144.07

skin 7.86±0.43 31.48 7.42±0.03 3.07 6.50±0.08 18.55 5.67±0.10 120.23

webspam 7.31±0.09 34.51 6.95±0.15 72.98 7.05±0.13 89.14 6.95±0.11 1949.20

covtype 28.73±0.16 355.98 29.46±0.37 102.62 27.41±0.10 498.42 27.18±0.15 3604.50

5.1 Benchmark datasets

To verify the performance of ADMM, we first make experi-
ments on small-scale benchmark datasets. ADMM is used to
solve SVM, NPSVM, RNPSVM to test its convergence and
precision of the solutions. The benchmark datasets are all
fromUCI repository. To obtain the best values of all the para-
meters, fivefold cross-validation is implemented. The penalty
parameters, C for SVM, ci (i = 1, 2, 3, 4) for NPSVM and
RNPSVM are all searched from the set {2−8, . . . , 28}. But
C1 = C2 = C3 = C4 is set for simplicity. The para-
meter ε is set to 0.2. The optimal values of t and s are
selected through searching the set {0.4, 0.6, 0.8, 1.0} and
{−1.0,−0.8,−0.6,−0.4,−0.2, 0}, respectively. The exper-
imental results of classification error and ratio of support
vectors (SVs%) are listed in Table1. The best results are
displayed in boldface. RNPSVM obtains 8 minimal classi-
fication errors on 10 datasets, which proves its superiority
on classification. NPSVM performs better than SVM on 5
datasets. NPSVM and RNPSVM get the lowest ratio of sup-
port vectors in a percent of 3/10 and 2/10, respectively. It
is obvious that ADMM can deal with QPPs well and get a
good approximate solution. To understand the convergence
process of ADMM clearly, the values of objective function

f , primal residual r , dual residual s according to the iteration
k are displayed in Fig. 3. The ε1, ε2 in the Eqs. (22), (23) is
set to be 10−4, 10−2, respectively. Due to the space limita-
tion, only the results of Votes and German are exhibited. It
is noted that the values of f, r, s become smaller than the tol-
erances or changeless after certain iterations, which proves
that the solutions of ADMM on SVM, NPSVM, RNPSVM
can all converge to stable points. The experimental results
demonstrate that: (1) Ramp loss function is very useful in
improving NPSVM since it is superior to hinge loss func-
tion in some aspects, including its insensitivity to outliers;
(2) nonparallel SVMs can extract more data information to
make more accurate prediction; (3) ADMM is effective in
solving quadratic programming problems by finding good
approximate solutions.

5.2 Large-scale datasets

In this subsection, nine large-scale datasets with different
sizes and dimensions are selected to test the classification
capability of NPSVM and RNPSVM solved by ADMM
on large-scale problems. The characteristics, including the
number of instances and attributes, class distribution, of the
datasets are listed in Table2. The experiments of SVMsolved
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Fig. 4 Convergence of ADMM on a9a and skin. a a9a-SVM. b a9a-NPSVM. c a9a-RNPSVM. d skin-SVM. e skin-NPSVM. f skin-RNPSVM
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by LIBLINEAR(SVM-L) and ADMM(SVM-A) are used to
make comparison with NPSVM and RNPSVM. The settings
of searching for the penalty parameters and ramp loss para-
meters are the same as in the benchmark datasets. The best
values of the parameters are achieved by threefold cross-
validation. The experimental results, classification error and
training time included, are shown in Table3. For SVM, mak-
ing comparison of LIBLINEAR and ADMM, SVM-A gets
seven lower classification errors than SVM-L. And SVM-
A is faster than SVM-L on five datasets. It can be seen that
ADMM ismore effective than LIBLINEAR in solving SVM.
In the nine datasets, NPSVM and RNPSVM obtain two and
five lowest errors, respectively. Obviously, RNPSVM shows
strong ability in making classification on large-scale prob-
lems. Similarly, the varying values of objective function,
primal residual and dual residual for ADMM are depicted in
Fig. 4. After a certain iteration, the objective functions do not
change again, and the residualsmeet the termination criterion
or fluctuate lightly. The case demonstrates that ADMM con-
verges to stable level finally. The experimental results prove
that NPSVM and RNPSVM perform better than SVM on
large-scale problems and ADMM can deal with large-scale
convex programming effectively.

6 Conclusions

In this paper, a new kind of large-scale version of NPSVMs
has been proposed, which aims to manage large-scale prob-
lems in an efficient way. LIBLINEAR is a well-performed
solver for the standard SVM in linear classification on both
benchmark and large-scale datasets. However, NPSVMs,
including the original NPSVM and ramp loss NPSVM,
have shown stronger ability in classification than SVM.
ADMM is applied in solving NPSVMs with the purpose of
classifying large-scale problems. ADMM can split a large
convex programming problem into several smaller-scale con-
vex problems and solve these problems iteratively until the
stop criterion is satisfied. The results of numerical experi-
ments demonstrate that ADMM can always converge into
stable solutions and NPSVMs still perform better than SVM
on large-scale classification problems.
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