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A B S T R A C T

Image classification is a critical and meaningful task in image retrieval, recognition and object detection.
In this paper, three-side efforts are taken to accomplish this task. First, visual features with multi-instance
representation are extracted to characterize the image due to the merits of bag-of-words representations. And
a new distance function is designed for bags, which measures the relationship between bags more precisely.
Second, the idea of multi-view learning is implemented since multiple views encourage the classifier to be
more consistent and accurate. Last but not least, the metric learning technique is explored by optimizing
the joint conditional probability to pursue view-dependent metrics and the importance weights of the newly-
designed distance in multi-view scenario. Therefore, we propose a multi-view multi-instance metric learning
method named MVMIML for image classification, which integrates the advantages of the multi-view multi-
instance representation and metric learning into a unified framework. To solve MVMIML, we adopt the
alternate iteration optimization algorithm and analyze the corresponding computational complexity. Numerical
experiments verify the advantages of the new distance function and the effectiveness of MVMIML.
1. Introduction

With explosive growth of image data from daily life and the Inter-
net, image classification and recognition have been an active research
spot for many years. The far-reaching study can be employed in prac-
tical applications, including face recognition (Qiu et al., 2021), species
categorization (Pang et al., 2021), object detection (Wang et al., 2021),
and so forth. However, there exist three challenges in this research. The
first challenge is to extract numerical features from images since the
original image cannot be exploited in the traditional machine learning
methods directly. A series of existing studies have focused on this area.
Classical methods for the feature extraction include haar-like feature
(HAAR) (Lienhart & Maydt, 2002), scale-invariant feature transform
(SIFT) (Lowe, 2004), histograms of oriented gradients (HOG) (Dalal
& Triggs, 2005), local binary pattern (LBP) (Ahonen et al., 2004),
speeded up robust feature (SURF) (Bay et al., 2006) and so on. The
above methods can be classified into two categories: single feature
vector representation (HAAR, HOG, LBP) and bag-of-words represen-
tation (SIFT, SURF, patches of LBP and HOG). The difference between
these two kinds of features is whether an image is represented by a
single vector or a bag of instances, leading to two areas in machine
learning: standard classification and multi-instance learning. Since the
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contents in an image are not distributed uniformly or regularly, bag-
of-words representation has the advantage that each word expresses an
image’s key feature independently (González et al., 2017). As a result,
the negative impact of unfixed locations of these key features can be
mitigated in a single vector.

Real-world data are usually collected from diverse domains or ob-
tained from various feature extractors. These data can be naturally
partitioned into distinct feature sets, each of which is regarded as a
particular view (Tang et al., 2021a, 2019, 2017). The second challenge
is to integrate the information from multiple feature sets effectively.
Multi-view learning (MVL) focuses on learning with such multiple
views for performance improvement. To guarantee its success, most
MVL algorithms concentrate on either view consistency or view diver-
sity corresponding to the consensus principle or the complementarity
principle. The former principle targets at maximizing the agreement
among multi-view features, while the latter principle emphasizes the
complementary information among views. Such two principles serve as
an important guide in multi-view modeling. Existing multi-view learn-
ing algorithms can be categorized into three groups: (1) co-training,
(2) multiple kernel learning, and (3) subspace learning. Extensive
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experiments have verified that leaning with multiple views contribute
to boosting the performance.

Based on the idea that the desired metric should shrink the distance
between similar points and expand the distance between dissimilar
points as much as possible, elaborate efforts have been made on metric
learning. For each image, we can extract its features from multiple
views, and each view consists of multi-instance representation. When
confronted with multi-view multi-instance features, how to measure the
distance between images has been rarely studied. Thus, the third key
challenge is to exploit an efficient data-dependent distance function to
characterize the image relationships with such feature representation
and the distributions in the feature space.

To address the above-mentioned challenges, it is worthy and im-
portant to fully explore the relationship among different views of one
image or among distinct bags in the same view. Therefore, we develop
multiple view-dependent metrics in multi-instance task with multi-view
representation.

In this paper, a new multi-view multi-instance metric learning
method, named MVMIML, is proposed for image classification. Due
to the merits of bag-of-words representations and multiple views, we
extract multi-instance multi-view features for each image. To leverage
such features effectively, we define a new distance function for bags,
and then pursue a view-dependent metric by maximizing the average
conditional probability to guarantee that every image is similar to
its nearest image. The distance between images is computed by the
weighted sum of the distance between bags from each single view.
Since the metrics and weights are both required to be optimized, we
adopt the alternate optimization strategy to solve our proposed model.
The comprehensive experiments verify the effectiveness of MVMIML for
image classification.

The main contributions are summarized as follows:

• We propose a new multi-view multi-instance metric learning
method (MVMIML), which integrates the merits of both the multi-
view multi-instance representation and metric learning into a
unified framework.

• A new distance function is designed for bags, which measures the
relationship between bags more precisely. Numerical experiments
have validated the effectiveness of the new distance function.

• Alternating iteration optimization algorithm is adopted to solve
MVMIML and we further theoretically analyze the corresponding
computational complexity.

• The extensive experiments on the image datasets confirm that
MVMIML compares more favorably than other benchmark algo-
rithms.

The remainder of this paper is organized as follows. In Section 2, we
introduce the related works about metric learning, multi-view learning
and multi-instance classification. Our model and the corresponding
optimization are provided in Section 3. In Section 4, numerical ex-
periments are performed to verify the effectiveness of our proposed
method. Finally, we conclude the paper in Section 5.

2. Related works

2.1. Metric learning

Metric learning aims to learn a distance function to improve the
performance of distance-related methods such as 𝑘NN and 𝑘-means
methods. Consider a dataset with 𝑐 classes

𝑇 = {(𝑥1, 𝑦1),… , (𝑥𝑚, 𝑦𝑚)}, (1)

where (𝑥𝑖, 𝑦𝑖) ∈ 𝑅𝑛 × {1, 2,… , 𝑐}, 𝑖 = 1,… , 𝑚 and 𝑚 is the total number
f samples, and 𝑛 is the number of features. Two sets are defined as
ollows

𝑆 = {(𝑥 , 𝑥 )|𝑦 = 𝑦 }, (2)
2

𝑖 𝑗 𝑖 𝑗 a
= {(𝑥𝑖, 𝑥𝑙)|𝑦𝑖 ≠ 𝑦𝑙}. (3)

The points in each pair of 𝑆 are from the same class and 𝐷 con-
tains pairs of dissimilar points. Metric learning seeks for a metric to
recompute the distance between two different points as

𝑑𝑀 (𝑥𝑖, 𝑥𝑗 ) = (𝑥𝑖 − 𝑥𝑗 )⊤𝑀(𝑥𝑖 − 𝑥𝑗 ), (4)

to make similar points closer and dissimilar points farther. In (4), an
effective metric 𝑀 should satisfy the following conditions (Wang &
Sun, 2014):

• distinguishability: 𝑑𝑀 (𝑥𝑖, 𝑥𝑖) = 0;
• non-negativity: 𝑑𝑀 (𝑥𝑖, 𝑥𝑗 ) ≥ 0;
• symmetry: 𝑑𝑀 (𝑥𝑖, 𝑥𝑗 ) = 𝑑𝑀 (𝑥𝑗 , 𝑥𝑖);
• triangular inequality: 𝑑𝑀 (𝑥𝑖, 𝑥𝑗 ) + 𝑑𝑀 (𝑥𝑖, 𝑥𝑘) ≥ 𝑑𝑀 (𝑥𝑗 , 𝑥𝑘).

Numerous metric learning methods have been proposed to show
trong ability of view-dependent distance in adjusting the original
tructure of the feature space, so that more advantageous neighbor-
oods can be formed. The label information of pairwise relationship in
2)–(3) has been exploited in most previous works. One of the earliest
fforts in pursuing ideal metric was metric learning with side infor-
ation (MLSI) (Xing et al., 2002). It used similarity side-information

o improve the performance of 𝑘NN based on the idea that similar
oints should be as near as possible and the distance between dis-
imilar points should be larger than a threshold. The method was
olved by positive semi-definite programming with high time complex-
ty and the performance was not significantly better than traditional
NN. Goldberger et al. proposed neighborhood component analysis
pproach (NCA) (Goldberger et al., 2004) which directly maximized
eave-one-out accuracy by learning a low-rank quadratic metric. But
he computational complexity was also very high due to the leave-one-
ut strategy. Based on NCA, large margin nearest neighbor method
LMNN) (Weinberger & Saul, 2009) was developed to minimize the
istance between any two similar and close points with the constraints
hat the points associated with different labels should be pushed away
rom the its neighborhood. Due to the limitations of LMNN, sev-
ral extensions were introduced to improve LMNN, including solving
MNN more efficiently (Park et al., 2011) and introducing kernels
nto LMNN (Torresani & Lee, 2006). Globerson and Roweis provided
n algorithm for learning a quadratic Gaussian metric (Mahalanobis
istance) in classification tasks (Globerson & Roweis, 2005). In Miao
t al. (2015), Miao et al. proposed a locally adaptive weighted distance-
etric learning method to deal with the non-linearity of the data. From

he view of information theory, Davis et al. presented a information-
heoretic metric learning model (ITML) (Davis et al., 2007) to minimize
he relative entropy between two multivariate Gaussian distribution,
eading to a Bregman optimization problem.

The above methods are all proposed only for standard classification
r clustering. Metric learning for the special tasks has also been stud-
ed extensively. A semi-supervised multi-view distance metric learning
SSM-DML) was proposed to learn the multi-view distance metrics
rom multiple feature sets and from the labels of unlabeled cartoon
haracters simultaneously (Yu et al., 2012). Jin et al. (2009) developed
n iterative metric learning algorithm for multi-instance multi-label
roblem to improve the quality of associations between instances and
lass labels. Multi-Instance metric Learning (MIMEL) (Xu et al., 2011)
imed to maximize inter-class bag distance and minimize intra-class
ag distance by constructing a minimization problem of KL divergence
etween two multivariate Gaussians.

.2. Multi-view learning

Many real-world applications involve data with multiple forms of
epresentation or ‘‘views’’. For instance, the identification of one person
an be represented by voice, fingerprint, iris and facial structure. As an

ctive research field in machine learning, multi-view learning leverages
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the information from multiple views for better performance (Cano,
2017). Existing multi-view learning algorithms can be divided into
three categories: (1) co-training, (2) multiple kernel learning, and (3)
subspace learning.

Co-training algorithms are semi-supervised learning methods, which
make the maximum mutual agreement on two views iteratively for
view consistency. In Wang and Zhou (2010), Wang and Zhou consid-
ered co-training as the combination of label propagation over two views
and unified the graph- and disagreement-based semi-supervised learn-
ing into one framework. The co-training cross-view based graph ran-
dom walk approach (Wang et al., 2017) focused on learning cross-view
distance measure by exploiting multiple graphs structure of multi-view
data.

Multiple kernel learning (MKL) algorithms utilize kernels corre-
sponding to different views and combine them either linearly or non-
linearly. For example, the SimpleMKL algorithm used a gradient de-
scent wrapping algorithm based on the standard SVM solver to it-
eratively determine the combination of kernels for MKL (Rakotoma-
monjy et al., 2008). By integrating nonparallel support vector machine
(NPSVM) into the MKL framework, Tang and Tian proposed a model
termed as MKNPSVM to learn the optimal kernel combination (Tang &
Tian, 2017).

Subspace learning algorithms assume that the input views come
from a latent subspace and aim at achieving this latent subspace shared
by multiple views. Canonical correlation analysis (CCA) (Hotelling,
1936) and its kernel version called kernel canonical correlation analysis
(KCCA) (Akaho, 2006) were two early works in subspace learning.
They pursued basic vectors for two sets of variables, each of which
corresponded to a single view. Multi-view least squares support vector
machines (MV-LSSVM) incorporated information from all views in the
training phase while still allowed for some degree of freedom to model
the views differently (Houthuys et al., 2018). Tang et al. proposed a
simple yet effective coupling privileged kernel method for multi-view
learning (Tang et al., 2019) and further extended it to transfer learn-
ing (Tang et al., 2021a). Based on the restricted Boltzmann machine
(RBM) and CCA, correlation RBM computed multi-view representations
by regularizing the marginal likelihood function with the consistency
across multiple views (Nan Zhang & Jia, 2019). By inheriting the
asymmetric merit of LINEX loss, Tang et al. presented a general multi-
view LINEX SVM framework including two models called MVLSVM-CO
and MVLSVM-SIM (Tang et al., 2021b).

2.3. Multi-instance learning

Different from standard supervised learning, in which the input
is described by a single feature vector, every input in multi-instance
learning (MIL) is a set of labeled instances called a bag. A bag is flagged
as positive if at least one instance in that bag is positive; otherwise, the
bag is labeled as negative. The instance level MIL methods attempt to
find positive instances in each bag to achieve a bag level classifier by
aggregating the instance level classifier (He et al., 2020). In Dietterich
et al. (1997), Dietterich introduced the multi-instance problem in the
study of drug activity prediction. The molecule and the isomers within
a molecule in the MIL was named as a bag and instances respectively.
If there was one effective isomer, then the molecule can be defined as
active, otherwise it was inactive. They developed three Axis-Parallel
Rectangles (APR) learning algorithms to find the best axis-parallel
rectangles that covered the maximum positive instances with the lowest
cost in the attribute space. To deal with the instances of which the
labels are ambiguous, Xiao et al. presented a similarity-based multiple-
instance learning approach (SMILE) by considering the similarity of
ambiguous instances to the positive class and the negative class (Xiao
et al., 2013).

The bag level and embedding level MIL methods transfer the bag
into a vector through distance measure such as kernel distance mea-
3

sure. The former directly calculates the distance between any two bags
in different formulations and generates the bag-level predictions by
performing voting on the instance predictions. The latter learns the
relationship among instances by projecting them into a new embedding
space. For example, Citation-𝑘NN (Wang & Zucker, 2000) was bag level
MIL method which decided the label of a bag not only by its neighbors
but also its cites. In Maron and Lozano-Pérez (1998), a probabilistic
framework called Diverse Density (DD) was to learn a concept by max-
imizing a defined likelihood function. The Expectation-Minimization
diversity density (EMDD) method tried to identify the instance with
highest diversity density, which was assumed to be the positive in-
stance in each bag as determined by the EM algorithm (Zhang &
Goldman, 2001). Melki et al. presented a novel bag-level representative
multi-instance learning SVM framework named MIRSVM (Melki et al.,
2018).

To our knowledge, there are few researches on the multi-instance
learning with multiple views using the technique of metric learning.
MVMIML is a probability framework, which defines a distance function
for multi-instance learning problem and integrates the information
from multiple views by learning multiple metrics. The experiments
verify that our approach is effective in dealing with image classification
with multi-view multi-instance representations.

3. Model and optimization

3.1. Multi-view multi-instance learning task

Since the features of every image can be extracted in the form of
bags, each of which contains multiple instances, we can regard image
classification as a multi-instance learning task. To begin with, we give
the formal description for multi-instance learning associated with the
training set as follows.

𝑇 = {(𝑋𝑖, 𝑦𝑖)}𝑚𝑖=1, (5)

where 𝑋𝑖 = {𝑥𝑖1,… , 𝑥𝑖𝑚𝑖
} is a bag including 𝑚𝑖 instances, and 𝑦𝑖 ∈

{1,… , 𝑐} is the corresponding label. Each instance 𝑥𝑖𝑘 in 𝑋𝑖 is a 𝑛-
dimensional real vector. If and only if at least one instance in a bag
belongs to class 𝑐, the bag belongs to class 𝑐.

The attributes of every image can be extracted from multiple feature
descriptors termed as multi-view data. Thus, by representing the image
with 𝑣 views, the training set (5) for 𝑘th (𝑘 = 1, 2,… , 𝑣) view is
rewritten as follows:

𝑇 𝑘 = {(𝑋𝑘
𝑖 , 𝑦𝑖)}

𝑚
𝑖=1 (6)

where 𝑋𝑘
𝑖 = {𝑥𝑘𝑖1, 𝑥

𝑘
𝑖2,… , 𝑥𝑘

𝑖𝑚𝑘
𝑖
}, 𝑦𝑖 ∈ {1, 2,… , 𝑐}. The bag 𝑋𝑘

𝑖 contains

𝑚𝑘
𝑖 instances and each is a real vector with 𝑛𝑘 dimensions. The number

of bags in different views is the same, but each bag in different views
contains different number of instances.

The goal is to find a prediction function 𝑓 with respect to multiple
distance metrics 𝑀1,… ,𝑀𝑣, and each corresponds to an unique view.
Given an image with the information from 𝑣 views, 𝑋1, 𝑋2,… , 𝑋𝑣,
the label of the image can be predicted by 𝑦 = 𝑓 (𝑋1, 𝑋2,… , 𝑋𝑣;𝑀1,
𝑀2,… ,𝑀𝑣).

3.2. Distance between bags

In the traditional distance metric learning, the following formula-
tion is used to measure the distance between two feature vectors 𝑥𝑖
and 𝑥𝑗

𝑑𝑀 (𝑥𝑖, 𝑥𝑗 ) = (𝑥𝑖 − 𝑥𝑗 )⊤𝑀(𝑥𝑖 − 𝑥𝑗 ), (7)

where the metric 𝑀 should satisfy the property of distinguishability,
non-negativity, symmetry and triangular inequality. However, in the
feature extraction of image, the feature is in the form of bag, which
contains multiple vectors. It is not suitable to concatenate these vectors

into a longer vector. So it is hard yet very important to measure the
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Fig. 1. A semantic explanation for 𝐷𝑎𝑚. The distinct bags a and b include several
instances represented by the squares. For each instance in a, it finds the nearest instance
in bag b and the distance is denoted by a solid line. For each instance in b, it finds
the nearest instance in bag a and the distance is denoted by a dashed line. 𝐷𝑎𝑚(𝑎, 𝑏)
equals to the average of all these distances.

distance of different images, each of which is represented by a bag of
instances.

In metric learning, two distance functions are commonly utilized
to measure the distances between bags as accurately as possible. The
first one is the average distance of pairwise examples from different
bags (Xu et al., 2011) formulated as

𝐷𝑎𝑣𝑒(𝑋𝑖, 𝑋𝑗 ;𝑀) = 1
𝑚𝑖𝑚𝑗

𝑚𝑖
∑

𝑘=1

𝑚𝑗
∑

𝑙=1
𝑑𝑀 (𝑥𝑖𝑘, 𝑥𝑗𝑙), (8)

where 𝑋𝑖 = {𝑥𝑖1, 𝑥𝑖2,… , 𝑥𝑖𝑚𝑖
} and 𝑋𝑗 = {𝑥𝑗1, 𝑥𝑗2,… , 𝑥𝑗𝑚𝑗

} are two bags.
The second one is the minimum distance of pairwise instances (Jin
et al., 2009) called minimal Hausdorff distance defined as

𝐷𝑚𝑖𝑛(𝑋𝑖, 𝑋𝑗 ;𝑀) = min
1≤𝑘≤𝑚𝑖 ,1≤𝑙≤𝑚𝑗

𝑑𝑀 (𝑥𝑖𝑘, 𝑥𝑗𝑙). (9)

However, the two functions exist some shortages. For the function 𝐷𝑎𝑣𝑒
as (8), calculating the distance of pairwise instances can bring much
redundant information, and the distance between two same bags is not
zero for 𝐷𝑎𝑣𝑒. For the function 𝐷𝑚𝑖𝑛 as (9), it determines the distance
of bags only by the minimum distance of pairwise instances, which
ignores too much useful information. If two different bags contain
similar instances, 𝐷𝑚𝑖𝑛 will make improper judgment. Therefore, both
𝐷𝑎𝑣𝑒 and 𝐷𝑚𝑖𝑛 cannot measure the bag distance properly.

Motivated by these, we design a new distance function. To begin
with, an intuitional geometrics interpretation is illustrated in Fig. 1.
For each instance 𝑥 in each bag, we find the nearest instance in the
other bag and record the corresponding distance. Such distance is
the minimum for 𝑥 in searching the other bag. We then calculate
the average of these minimums, named as 𝐷𝑎𝑚. Formally, the newly-
designed distance function 𝐷𝑎𝑚 between two bags 𝑋𝑖 and 𝑋𝑗 is provided
as follows

𝐷𝑎𝑚(𝑋𝑖, 𝑋𝑗 ;𝑀) = 1
𝑚𝑖

𝑚𝑖
∑

𝑝=1
min

𝑥𝑗𝑙∈𝑋𝑗
𝑑𝑀 (𝑥𝑖𝑝, 𝑥𝑗𝑙) +

1
𝑚𝑗

𝑚𝑗
∑

𝑞=1
min

𝑥𝑖ℎ∈𝑋𝑖
𝑑𝑀 (𝑥𝑗𝑞 , 𝑥𝑖ℎ).

(10)

We explain the advantage of the defined distance visually in Fig. 2.
The verification of the effectiveness of our proposed distance function
is performed in Section 4.

In multi-view scenario, every image 𝐼 is represented by 𝑣 views
𝑋1

𝑖 , 𝑋
2
𝑖 ,… , 𝑋𝑣

𝑖 . The distance between two images 𝐼 and 𝐽 is defined
as

𝐷𝑀 (𝐼, 𝐽 ) =
𝑣
∑

𝑘=1
𝛼𝑘𝐷𝑎𝑚(𝑋𝑘

𝑖 , 𝑋
𝑘
𝑗 ;𝑀𝑘), (11)

where 𝛼 , 𝑖 = 1,… , 𝑣 are the weights to be learned.
4

𝑖

3.3. Metric learning in probability framework

Although the distance between bags is designed, the relationship
between instances is also very important since it affects bag distance
significantly. Fortunately, metric learning can be applied to establish
favorable relationships for instances from bags. Inspired by the ideas
of 𝑘NN and NCA (Goldberger et al., 2004), we aim to maximize the
probability that one image’s nearest image has the same label with it.
In multi-view situation, we consider optimizing the joint conditional
probability distribution of the image 𝐼 with 𝑣 views, but not simply
maximize the sum of the marginal probability distribution, i.e.,

𝑝(𝑦𝑖|𝑋1
𝑖 , 𝑋

2
𝑖 ,… , 𝑋𝑣

𝑖 ;ℳ) =
exp(−𝑓 (𝑋𝑖, 𝑦𝑖))

∑𝑐
𝑦=1 exp(−𝑓 (𝑋𝑖, 𝑦))

, (12)

where

𝑓 (𝑋𝑖, 𝑦) = min
𝑦𝑗=𝑦

𝐷𝑀 (𝐼, 𝐽 ) = min
𝑦𝑗=𝑦

𝑣
∑

𝑘=1
𝛼𝑘𝐷𝑎𝑚(𝑋𝑘

𝑖 , 𝑋
𝑘
𝑗 ;𝑀𝑘), (13)

and ℳ = {𝑀1,… ,𝑀𝑣}.
On the whole training set, the following regularized likelihood

function is constructed to learn the desired distance metrics

min
ℳ,𝛼

𝐸(ℳ, 𝛼)

= − 1
𝑚

𝑚
∑

𝑖=1
ln 𝑝(𝑦𝑖|𝑋1

𝑖 , 𝑋
2
𝑖 ,… , 𝑋𝑣

𝑖 ;ℳ) + 𝜆
2

𝑣
∑

𝑘=1
‖𝑀𝑘‖

2
𝐹 +

𝜇
2
‖𝛼‖2

= 1
𝑚

𝑚
∑

𝑖=1
𝑓 (𝑋𝑖, 𝑦𝑖) +

1
𝑚

𝑚
∑

𝑖=1
ln(

𝑐
∑

𝑦=1
exp(−𝑓 (𝑋𝑖, 𝑦))) +

𝜆
2

𝑣
∑

𝑘=1
‖𝑀𝑘‖

2
𝐹 +

𝜇
2
‖𝛼‖2.

(14)

To ensure the basic property of metric, 𝐸(ℳ, 𝛼) should satisfy 𝑀𝑘 ⪰
0, 𝑘 = 1,… , 𝑣 (positive semi-definite).

Let 𝑣 = 1, the primary model (14) degenerates into a single view
version and the objective function becomes

min
𝑀,𝛼

𝐸𝑠(𝑀,𝛼) = − 1
𝑚

𝑚
∑

𝑖=1
ln 𝑝(𝑦𝑖|𝑋𝑖;𝑀) + 𝜆

2
‖𝑀‖

2
𝐹 , (15)

where 𝑀 ⪰ 0 (positive semi-definite). The model (15) can be used to
learn the metric in multi-instance classification with a single view. The
workflow of the MVMIML method are summarized in Fig. Fig. 3.

3.4. Optimization

Since the models (14) and (15) are constructed with the constraints
that all the metrics should be positive semi-definite, the optimal metrics
can be achieved in the following strategy for simplicity. First, we can
reduce the models (14) and (15) to unconstrained minimization prob-
lems. Due to the minimization of such problems, mini-batch stochastic
gradient descent algorithm (Khalilpourazari et al., 2021) is adopted to
obtain 𝑀1, 𝑀2, ⋯ , 𝑀𝑣. Then we project such metrics 𝑀1, 𝑀2,… , 𝑀𝑣
into positive semi-definite space. In multi-view scenario, problem (14)
involves complex optimization with respect to view-dependent metrics
{𝑀𝑘}𝑣𝑘=1 and importance weights {𝛼𝑘}𝑣𝑘=1 for the newly-designed dis-
tance. Similar to Tang et al. (2021b), we can decompose (14) into two
sub-problems respectively in an alternating optimization procedure,
where each sub-problem is solved by the mini-batch stochastic gradient
descent algorithm. Note that sub-problem with respect to {𝑀𝑘}𝑣𝑘=1 can
be solved by above two-step strategy. Iterations are repeated until
convergence or a maximum number of iterations is reached.

In single view scenario, only one metric 𝑀 need to be optimized.
The model (15) can be solved in the Algorithm 1. Given an unknown
image L with bag 𝑋𝑙, its label can be decided by

𝑦𝑙 = arg max
𝑦=1,…,𝑐

𝑝(𝑦|𝑋𝑙;𝑀∗). (16)
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Fig. 2. A simple task to compare three kinds of bag distance 𝐷𝑎𝑣𝑒 , 𝐷𝑚𝑖𝑛 and 𝐷𝑎𝑚. Given a picture a belonged to the class of car, find the picture with the same label from b and
c. There are 7, 4 and 3 key points in the picture a, b and c respectively. The blue squares are the key points indicating the label. On the instance level, the key points b1, b2 in
b are similar to a3, a4 in a, and c2, c3 in c are similar to a1, a2 in a. In the function 𝐷𝑚𝑖𝑛, the distances between pictures are 𝐷𝑚𝑖𝑛(𝑎, 𝑏) = 𝑑(𝑎3, 𝑏1) and 𝐷𝑚𝑖𝑛(𝑎, 𝑐) = 𝑑(𝑎1, 𝑐2) (The
black lines in Fig. 2(b) are pairwise distances calculated by 𝐷𝑚𝑖𝑛), and both are relative small. We will make the wrong judge if the latter is slightly smaller than the former one.
So similar instances from different classes can weaken the quality of 𝐷𝑚𝑖𝑛. In the function 𝐷𝑎𝑣𝑒, all the distances of pairwise instances will be computed and averaged, bringing
negative information, such as 𝑑(𝑎3, 𝑏3), 𝑑(𝑎4, 𝑏4), 𝑑(𝑎3, 𝑏4), which will not be calculated in 𝐷𝑎𝑚 (In Fig. 2(b), the red lines are redundant distance information in computing bag
distance).
Algorithm 1 Single view multi-instance metric learning (SVMIML)
Input: Dataset 𝑇 = {(𝑋𝑖, 𝑦𝑖)}𝑚𝑖=1, 𝑋𝑖 = {𝑥𝑖1, 𝑥𝑖2,⋯ , 𝑥𝑖𝑚𝑖

}, 𝑦𝑖 ∈
{1, 2,⋯ , 𝑐}, penalty parameters 𝜆, learning rate 𝜂, maximum of itera-
tions 𝑅.
Output: Target metrics 𝑀∗;
1: Initialize: 𝑀 (0) as identity matrix and set 𝑟 = 0;
2: while not converge do
3: Randomly choose 𝑝 pairs of samples: {(𝑋𝑖, 𝑦𝑖)}

𝑝
𝑖=1 and build model

(15);
4: Calculate 𝜕𝐸𝑠

𝜕𝑀 (𝑟) according to (15);
5: Update model parameters 𝑀 (𝑟+1) using

𝑀 (𝑟+1) = 𝑀 (𝑟) − 𝜂
𝜕𝐸𝑠

𝜕𝑀 (𝑟)
; (17)

6: 𝑟 = 𝑟 + 1;
7: end while
8: Project 𝑀 (𝑅) by

𝑀 (𝑅) = PSD(𝑀 (𝑅)), (18)

where PSD denotes the projection operator of positive semi-definite
space;

9: Return: Optimal 𝑀∗.

In multi-view case, problem (14) involve complex optimization with
respect to {𝑀𝑘}𝑣𝑘=1 and {𝛼𝑘}𝑣𝑘=1. Similar to Tang et al. (2021b), we can
decompose (14) into two sub-problems respectively in an alternating
optimization procedure. Iterations are repeated until convergence or a
maximum number of iterations is reached.

Updating {𝑀𝑘}𝑣𝑘=1. For the fixed 𝛼𝑘, 𝑘 = 1,… , 𝑣, the gradient of
𝐸(ℳ, 𝛼) with respect to 𝑀𝑘 is computed as

𝜕𝐸
𝜕𝑀𝑘

= 1
𝑚

𝑚
∑

𝑖=1

𝜕𝑓 (𝑋𝑖, 𝑦𝑖)
𝜕𝑀𝑘

+𝜆𝑀𝑘+
1
𝑚

𝑚
∑

𝑖=1

∑𝑐
𝑦=1 exp(−𝑓 (𝑋𝑖, 𝑦))

𝜕𝑓 (𝑋𝑖 ,𝑦)
𝜕𝑀𝑘

∑𝑐
𝑦=1 exp(−𝑓 (𝑋𝑖, 𝑦))

. (19)

To obtain 𝜕𝑓 (𝑋𝑖 ,𝑦)
𝜕𝑀𝑘

, we decompose it as

𝜕𝑓 (𝑋𝑖, 𝑦)
𝜕𝑀𝑘

= 𝜕
𝜕𝑀𝑘

𝛼∗
𝑘𝐷𝑎𝑚(𝑋𝑘

𝑖 , 𝑋
𝑘
𝑗∗ )

=
𝛼∗
𝑘

𝑚𝑘
𝑖

𝑚𝑘
𝑖

∑

𝑝=1

𝜕
𝜕𝑀𝑘

min
𝑥𝑗𝑙∈𝑋𝑗

𝑑𝑀 (𝑥𝑖𝑝, 𝑥𝑗𝑙) +
𝛼∗
𝑘

𝑚𝑘
𝑗

𝑚𝑘
𝑗

∑

𝑞=1

𝜕
𝜕𝑀𝑘

min
𝑥𝑖ℎ∈𝑋𝑖

𝑑𝑀 (𝑥𝑗𝑞 , 𝑥𝑖ℎ)

=
𝛼∗
𝑘

𝑚𝑘
𝑖

𝑚𝑘
𝑖

∑

𝑝=1
(𝑥𝑖𝑝 − 𝑥𝑗𝑙∗ )(𝑥𝑖𝑝 − 𝑥𝑗𝑙∗ )⊤ +

𝛼∗
𝑘

𝑚𝑘
𝑗

𝑚𝑘
𝑗

∑

𝑞=1
(𝑥𝑗𝑞 − 𝑥𝑖ℎ∗ )(𝑥𝑗𝑞 − 𝑥𝑖ℎ∗ )⊤,

(20)
5

where

(𝛼∗𝑘 , 𝑗
∗) = argmin

𝛼,𝑗

𝑣
∑

𝑘=1
𝛼𝑘𝐷𝑎𝑚(𝑋𝑘

𝑖 , 𝑋
𝑘
𝑗 ). (21)

For each 𝑝 = 1,… , 𝑚𝑘
𝑖 ,

𝑙∗ = arg min
𝑥𝑗𝑙∈𝑋𝑗

𝑑𝑀 (𝑥𝑖𝑝, 𝑥𝑗𝑙), (22)

and for each 𝑞 = 1,… , 𝑚𝑘
𝑗 ,

ℎ∗ = arg min
𝑥𝑖ℎ∈𝑋𝑖

𝑑𝑀 (𝑥𝑗𝑞 , 𝑥𝑖ℎ). (23)

Updating 𝛼. For the fixed 𝑀𝑘, 𝑘 = 1,… , 𝑣, the gradient of 𝐸(ℳ, 𝛼)
with respect to 𝛼 is computed as

𝜕𝐸
𝜕𝛼

= 1
𝑚

𝑚
∑

𝑖=1
𝐹 (𝑋𝑖, 𝑦𝑖) + 𝜇𝛼 + 1

𝑚

𝑚
∑

𝑖=1

∑𝑐
𝑦=1 exp(−𝑓 (𝑋𝑖, 𝑦))𝐹 (𝑋𝑖, 𝑦)
∑𝑐

𝑦=1 exp(−𝑓 (𝑋𝑖, 𝑦))
, (24)

where

𝐹 (𝑋𝑖, 𝑦) = (𝐷𝑎𝑚(𝑋1
𝑖 , 𝑋

1
𝑗 ;𝑀1),… , 𝐷𝑎𝑚(𝑋𝑣

𝑖 , 𝑋
𝑣
𝑗 ;𝑀𝑣))⊤, (25)

and

(𝑋1
𝑗 ,… , 𝑋𝑣

𝑗 ) = arg min
𝑦𝑗=𝑦

𝑣
∑

𝑘=1
𝛼𝑘𝐷𝑎𝑚(𝑋𝑘

𝑖 , 𝑋
𝑘
𝑗 ;𝑀𝑘). (26)

The detailed procedure of our method (14) is shown in Algorithm
2. Given an unknown image L with 𝑣 views 𝑋1

𝑙 ,… , 𝑋𝑣
𝑙 , its label can be

predicted by

𝑦𝑙 = arg max
𝑦=1,…,𝑐

𝑝(𝑦|𝑋1
𝑙 ,… , 𝑋𝑣

𝑙 ;ℳ
∗), (27)

where ℳ∗ = {𝑀∗
1 ,… ,𝑀∗

𝑣 }.

3.5. Computational complexity

Our model (14) is solved iteratively with alternate optimization. The
computation of mini-batch stochastic gradient descent is the main part
of the computational cost. It contains two parts: updating metrics and
weights. In the process of updating the metrics, the computational cost
in every iteration is 𝑂(𝑉 2𝐾2𝑚𝑛(𝑚+𝑛)), where 𝑉 is the number of views,
𝐾 is the number of images, 𝑚 is the average number of instances in
each bag and 𝑛 is the average length of each instance. And the cost is
𝑂(𝑉 𝐾2𝑚𝑛(𝑚+𝑛)) in updating weights. Considering the iteration number
𝑅 and 𝑄, the total computational cost of our model is 𝑂(𝑅𝑄𝑉 2𝐾2𝑚𝑛(𝑚+
𝑛)). Due to the merits of mini-batch stochastic gradient descent, the
number of iterations is reduced and the stable solution can be achieved
more effective than the original stochastic gradient descent algorithm.
Although the cost is relatively high, it is tractable in our experiments. It
can further be improved by GPU acceleration or some specific speedup
strategies such as parallel computing in the future.
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Fig. 3. The workflow of our MVMIML method. The model can be divided into two periods: training period and testing period.
Algorithm 2 Multi-view multi-instance metric learning (MVMIML)
Input: Dataset 𝑇 𝑘 = {(𝑋𝑘

𝑖 , 𝑦𝑖)}
𝑚
𝑖=1, 𝑋𝑘

𝑖 = {𝑥𝑘𝑖1, 𝑥
𝑘
𝑖2,⋯ , 𝑥𝑘

𝑖𝑚𝑘
𝑖
}, 𝑦𝑖 ∈

{1, 2,⋯ , 𝑐}, 𝑘 = 1, 2,⋯ , 𝑣, penalty parameters 𝜆, learning rate 𝜂1, 𝜂2,
maximum of iterations 𝑅, 𝑄.
Output: Target metrics 𝑀∗

1 , ⋯ ,𝑀∗
𝑣 and weights 𝛼∗ =

(𝛼∗1 ,⋯ , 𝛼∗𝑣 )
⊤;

1: Initialize: 𝑀 (0)
1 ,𝑀 (0)

2 ,⋯ ,𝑀 (0)
𝑣 as identity matrix, 𝛼(0) =

(𝛼(0)1 , 𝛼(0)2 ,⋯ , 𝛼(0)𝑣 )⊤ = ( 1𝑣 ,⋯ , 1𝑣 )
⊤ and set 𝑟 = 0, 𝑞 = 0;

2: while not converge do
3: while not converge do
4: Randomly choose 𝑝 pairs of samples: {(𝑋𝑘

𝑖 , 𝑦𝑖)}
𝑝
𝑖=1 (𝑘 =

1, 2,⋯ , 𝑣) and build model (14);
5: Calculate 𝜕𝐸

𝜕𝑀 (𝑟)
𝑘

(𝑘 = 1, 2,⋯ , 𝑣) by using (19) and (20);

6: Update model parameters 𝑀 (𝑟+1)
𝑘 (𝑘 = 1, 2,⋯ , 𝑣) by using

𝑀 (𝑟+1)
𝑘 = 𝑀 (𝑟)

𝑘 − 𝜂1
𝜕𝐸

𝜕𝑀 (𝑟)
𝑘

; (28)

7: 𝑟 = 𝑟 + 1;
8: end while
9: Project 𝑀 (𝑅)

𝑘 by

𝑀 (𝑅)
𝑘 = PSD(𝑀 (𝑅)

𝑘 ), (29)

where PSD denotes the projection operator of positive semi-
definite space, and 𝑘 = 1, 2,⋯ , 𝑣;

10: Calculate 𝜕𝐸
𝜕𝛼(𝑞)

by using (24) with fixed 𝑀 (𝑅)
1 ,𝑀 (𝑅)

2 ,⋯ ,𝑀 (𝑅)
𝑣 ;

11: Update 𝛼(𝑞+1) by using

𝛼(𝑞+1) = 𝛼(𝑞) − 𝜂2
𝜕𝐸
𝜕𝛼(𝑞)

; (30)

12: 𝑞 = 𝑞 + 1;
13: end while
14: Return: Optimal target metrics 𝑀∗

1 , ⋯ ,𝑀∗
𝑣 and weights 𝛼∗ =

(𝛼∗1 ,⋯ , 𝛼∗𝑣 )
⊤.
6

4. Experiments

This section presents experimental results on both the image
datasets to verify the effectiveness of MVMIML. The experiments are
performed on Matlab 2015a (PC, 8 GB RAM). Besides, for the deep
learning experiment section, we use the TensorFlow framework (GPU:
NVIDIA M40).

4.1. Datasets

Six datasets Corel, Caltech, Birds, Butterfly, Galaxy Zoo and FERET
are selected and each dataset is converted into standard format con-
taining three parts, i.e., features, bag ids and labels. These datasets can
be divided into four categories: (1) Object detection. Detect particular
object in an image by the unique features of the object. The object
often appears with complex background that may affect the feature ex-
traction. (2) Species recognition. A species may contain several classes.
The task is to recognize the class of a species. The difficulty is that
there exists exiguous difference between distinct classes of the same
species. (3) Galaxy discrimination. Discriminating the shape of galaxy
automatically is useful in astronomy since it can help scientists track
the evolution of galaxies. (4) Face identification. FERET (Facial Recog-
nition Technology) dataset (Phillips et al., 2000) is used to identify
the gender of a given face. Its primary task is to develop automatic
face recognition technology to assist security, intelligence and law
enforcement personnel. For these four categories, some example are
presented as shown in Figs. 4, 5, 6 and 7. The detailed descriptions
of these datasets are provided as shown in Table 1.

4.2. Feature extraction for images

In this section, we introduce three features extraction methods to
construct different views of the image datasets.

4.2.1. HOG feature
It first divides image into smaller ‘‘cells’’ and accumulates histogram

of gradient or edge directions for each cell (Dalal & Triggs, 2005). The
combination of these histograms is the HOG feature of the whole image.
However, we describe each image with a bag of 9-size cells instead of
combining the histograms. Each cell is represented by a feature vector.
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Table 1
Characteristics of image datasets.

Dataset Task # of Classes Class names

Corel (Duygulu et al., 2002) Object detection 10 architecture, bus, dinosaur, elephant, face, flower, food, horse, sky and snowberg
Caltech (Bosch et al., 2007) Object detection 6 car, motorcycle, airplane, face, leaf and background
Butterfly (Lazebnik et al., 2004) Species recognition 7 admiral, black-swallowtail, machaon, monarch-closed, monarch-open, peacock and zebra
Birds (Mohanty et al., 2020) Species recognition 6 egret, mandarin, owl, puffin, toucan and wood duck
Galaxy Zoo (Misra et al., 2020) Galaxy discrimination 3 edge-on, elliptical and spiral
FERET (Phillips et al., 2000) Face identification 2 man and woman
Fig. 4. Images of Object Detection.
Fig. 5. Images of the Butterfly .
Fig. 6. Images of the Galaxy Zoo.

Fig. 7. Images of the FERET .

4.2.2. SIFT key points
The SIFT features are suitable for multi-instance learning. SIFT has

been widely applied to many applications (Felzenszwalb et al., 2010)
since it is invariant to image scale and rotation. SIFT (Lowe, 2004) can
find interest points at multiple scale to represent important regions of
each image. Each key point is a 128-length numerical feature vector
and each image is described by a bag of multiple key points. It is worthy
to point out that SIFT can extract different numbers of key points from
diverse images, so that the idea of concatenating the vectors into a
single feature vector is not tractable in traditional classification.

4.2.3. Uniform patches with LBP
Similar to ‘‘visual dictionary’’ (Wen et al., 2009), every image will

be divided into 4×4 uniformly distributed patches, since multi-instance
feature can be more powerful than a single instance in representing an
image (González et al., 2017). Every patch can be expressed by a single
7

Table 2
The computed distances in three kinds of features.

𝐷𝑎𝑚 𝐷𝑚𝑖𝑛 𝐷𝑎𝑣𝑒

HOG
0 0.49 0.41 0 0.29 0.26 0.38 0.81 0.61
0.49 0 0.29 0 1.03 0.81 0.37 1.3
0.41 1.14 0 0.26 1.03 0 0.61 1.3 0.34

SIFT
0 0.66 0.78 0 0.30 0.48 0.94 1.08 1.07
0.66 0 0.72 0.30 0 0.45 1.08 0.95 1.07
0.78 0.72 0 0.48 0.45 0 1.07 1.07 0.94

LBP
0 1.69 1.96 0 0.49 0.38 3.86 4.41 4.57
1.69 0 2.21 0.49 0 0.67 4.41 2.82 4.37
1.96 2.21 0 0.38 0.67 0 4.57 4.37 3.07

instance with the 256-dimensional LBP features. Then each image is
transformed into a bag including 16 instances.

4.3. Distance comparison

In Section 3.2, we have claimed that the distance function 𝐷𝑎𝑚,
designed for bags, is prior to previous 𝐷𝑎𝑣𝑒 and 𝐷𝑚𝑖𝑛. Next, we will
perform numerical experiments to verify the judgment. First, a toy
example is given in Fig. 8 to show the difference among three distance
functions. We select three images from the Corel dataset. The former
two images 𝐼1 and 𝐼2 belong to the class of architecture and the third
one 𝐼3 belongs to snowberg. Then, the features of HOG, SIFT and LBP
are extracted and depicted in the last three lines of Fig. 8. Each curve in
the subfigures represents an instance. The horizontal and vertical axes
denote the number of the features and the value of the components of
the instance, respectively. For the subfigures about the first two images,
the trends of the curves are similar for the HOG, SIFT and LBP features,
which verify that the first two images belong to the same class. Further
more, we compute the distances between any two images in Table 2.
Since the first two images belong to the same class, the distances
that verify the fact are in boldface. The numbers with underline can
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Fig. 8. A toy example to compare three distance functions 𝐷𝑎𝑚 , 𝐷𝑚𝑖𝑛 and 𝐷𝑎𝑣𝑒. The second, third and fourth line of images correspond to HOG, SIFT, and LBP features respectively.
Each curve in a subfigure denotes an instance. The horizontal axis denotes the order number of each feature and the vertical axis denotes the numerical value of the components
of the instance.
Table 3
1-NN classification accuracy of different distances on different features.
Datasets Distance Feature Average

HOG SIFT LBP

Car
(600&2)

𝐷𝑎𝑣𝑒 56.67 ± 2.25 51.83 ± 1.04 47.50 ± 6.56 52.00
𝐷𝑚𝑖𝑛 60.67 ± 2.52 59.33 ± 2.36 53.83 ± 1.61 57.94
𝐷𝑎𝑚 64.00 ± 3.46 64.50 ± 2.00 59.17 ± 1.89 62.56

Butterfly
(619&7)

𝐷𝑎𝑣𝑒 17.28 ± 3.64 23.42 ± 3.16 21.16 ± 1.97 20.62
𝐷𝑚𝑖𝑛 40.55 ± 2.75 84.33 ± 0.98 26.66 ± 1.31 50.51
𝐷𝑎𝑚 52.66 ± 1.89 81.74 ± 1.49 28.12 ± 4.73 54.17

Corel
(1000&10)

𝐷𝑎𝑣𝑒 15.20 ± 4.53 13.60 ± 0.44 36.50 ± 3.45 21.77
𝐷𝑚𝑖𝑛 44.50 ± 1.28 32.90 ± 1.08 39.80 ± 3.05 39.07
𝐷𝑎𝑚 50.70 ± 3.47 46.30 ± 3.06 58.00 ± 1.32 51.67
misguide the judgment of distance function. Indeed, these three images
are similar in structure, color and luminance, which gives a challenge
to the distance function. In SIFT and LBP features, 𝐷𝑎𝑚(𝐼1, 𝐼2) is smaller
than 𝐷𝑎𝑚(𝐼1, 𝐼3) and 𝐷𝑎𝑚(𝐼2, 𝐼3), implying that 𝐼1 and 𝐼2 belong to the
8

same class. So 𝐷𝑎𝑚 can make right judges in SIFT and LBP features,
better than 𝐷𝑎𝑣𝑒 and 𝐷𝑚𝑖𝑛.

To further validate the effectiveness of 𝐷𝑎𝑚, 1NN classification is
implemented with these three distance functions. Euclidean distance
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Table 4
Classification accuracy of multi-instance methods and MVMIML.

Datasets Single view Multi-view(MVMIML)

Method HOG SIFT LBP H&S H&L S&L H&S&L

Corel
(300&10)

C-𝑘NN(min) 33.00 ± 6.08 26.33 ± 4.04 33.33 ± 4.51

52.33 ± 6.11 55.33 ± 2.52 57.67 ± 6.43 60.00 ± 1.73
C-𝑘NN(max) 29.67 ± 7.51 22.00 ± 4.36 43.67 ± 5.13
MInD 35.33 ± 3.79 25.67 ± 4.04 23.33 ± 1.53
𝑘NN+𝐷𝑎𝑚 43.00 ± 2.65 42.67 ± 4.16 54.00 ± 2.00
SVMIML 44.00 ± 1.00 42.98 ± 3.32 59.33 ± 5.77

Caltech
(300&6)

C-𝑘NN(min) 64.33 ± 6.81 55.67 ± 14.5 54.00 ± 8.72

86.00 ± 2.65 85.00 ± 6.08 77.33 ± 1.53 87.00 ± 4.58
C-𝑘NN(max) 37.67 ± 13.3 46.67 ± 4.93 59.00 ± 2.00
MInD 77.67 ± 1.15 55.33 ± 3.79 65.67 ± 4.73
𝑘NN+𝐷𝑎𝑚 79.98 ± 2.77 66.59 ± 1.79 78.67 ± 3.21
SVMIML 80.33 ± 2.52 67.67 ± 1.53 78.33 ± 3.06

Birds
(600&6)

C-𝑘NN(min) 23.00 ± 3.04 35.00 ± 4.27 19.33 ± 1.61

42.50 ± 3.28 33.67 ± 3.06 44.50 ± 2.29 43.17 ± 2.52
C-𝑘NN(max) 20.67 ± 2.36 23.33 ± 2.08 26.50 ± 1.73
MInD 28.33 ± 2.25 35.17 ± 4.01 27.17 ± 5.06
𝑘NN+𝐷𝑎𝑚 34.17 ± 2.02 44.32 ± 2.93 32.99 ± 4.25
SVMIML 32.67 ± 3.62 44.67 ± 3.06 33.67 ± 3.01

Butterfly
(280&7)

C-𝑘NN(min) 37.49 ± 3.01 58.90 ± 12.1 21.79 ± 1.74

73.22 ± 0.93 43.25 ± 8.13 67.14 ± 4.15 73.57 ± 2.29
C-𝑘NN(max) 33.58 ± 2.42 32.86 ± 1.35 19.99 ± 6.25
MInD 44.29 ± 5.58 60.33 ± 5.89 16.44 ± 3.51
𝑘NN+𝐷𝑎𝑚 47.51 ± 2.93 71.43 ± 1.34 22.85 ± 1.50
SVMIML 48.22 ± 2.02 71.79 ± 2.44 24.64 ± 2.15

Galaxy
(210&3)

C-𝑘NN(min) 57.62 ± 2.18 49.52 ± 3.60 57.62 ± 7.05

81.90 ± 4.12 83.33 ± 3.60 84.29 ± 5.71 85.71 ± 3.78
C-𝑘NN(max) 62.38 ± 2.18 51.43 ± 9.37 74.76 ± 1.65
MInD 77.62 ± 0.82 65.24 ± 0.82 71.43 ± 6.55
𝑘NN+𝐷𝑎𝑚 77.92 ± 1.35 62.38 ± 1.65 81.90 ± 8.37
SVMIML 78.10 ± 1.82 62.86 ± 1.43 82.38 ± 5.87

FERET
(150&2)

C-𝑘NN(min) 67.33 ± 4.62 62.67 ± 3.06 63.33 ± 8.08

84.00 ± 8.72 81.33 ± 1.15 78.00 ± 4.00 84.00 ± 2.00
C-𝑘NN(max) 76.00 ± 2.00 62.67 ± 5.03 59.33 ± 6.43
MInD 82.00 ± 2.00 73.33 ± 6.43 73.33 ± 1.15
𝑘NN+𝐷𝑎𝑚 82.55 ± 2.57 76.00 ± 7.21 71.33 ± 5.03
SVMIML 82.67 ± 2.31 76.00 ± 5.29 76.00 ± 2.00
T
T
f
b
A
c
p
d
i
a
c

B

c
i
w
a
e
i
M
o
2
b
T

is used to compute the distance between instances. We select three
datasets, Car (from Caltech), butterfly and Corel, and apply three-fold
ross validation in this experiments. Accuracy and standard deviation
re reported in Table 3. It is obvious that 1NN with 𝐷𝑎𝑚 achieves the

best performance on most of the features of the three datasets. 𝐷𝑎𝑣𝑒
performs much worse than 𝐷𝑎𝑚 and 𝐷𝑚𝑖𝑛.

4.4. Performance evaluation

In this section, we will evaluate our model from three aspects,
including classification ability in different scenarios, robustness to pa-
rameters and sensitivity to instance number of bags.

4.4.1. Image classification
To evaluate the performance of MVMIML comprehensively, three

categories of methods will be selected to make comparisons, i.e., multi-
instance learning, metric learning and multi-instance metric learning.
For each method, we conduct experiments to yield the average accuracy
on six datasets, and all the experiments are repeated 10 times.

A. Compared with multi-instance learning
The experiments are divided into two parts: single view and multi-

view. In single view classification, experiments on three features HOG,
SIFT and LBP are conducted independently. Three baseline methods are
selected. For the Citation 𝑘NN method (Wang & Zucker, 2000), we set
𝑅 = 3 and 𝐶 = 5, and apply the minimal and maximal Hausdorff
distance respectively. Note that Citation-𝑘NN is simplified as C-𝑘NN
in the following. The second baseline method is MInD (Cheplygina
et al., 2015) associated with asymmetric average minimum distances.
The third one is the 𝑘NN classification with 𝐷𝑎𝑚 distance measure. In
SVMIML, the penalty parameter 𝜆 and the learning rate 𝜂 are both
empirically set to be 0.1 and the number of iteration 𝑅 is set to be
3. From Table 4, SVMIML always behaves the best performance.
9
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For multi-view classification, the three features can be combined
into four groups: HOG+SIFT (H&S), HOG+LBP (H&L), SIFT+LBP
(S&L) and HOG+SIFT+LBP (H&S&L). The experiments on these four
multi-view cases are performed individually. To obtain the best param-
eters for all the methods, the grid search strategy with the five-fold
cross-validation technique is implemented. The penalty parameters 𝜆
and 𝜇 are both selected from the set {0.01, 0.1, 1} and the combination
of 𝜂1 and 𝜂2 is chosen from the set {(0.01, 0.01), (0.05, 0.05), (0.1, 0.1)}.

he numbers of iteration 𝜏 and 𝑅 are set to be 2 and 3 respectively.
he classification results are shown in Table 4. The experiments on the
eature group H&S&L behave the best on 5 out of 6 image datasets,
etter than single view classification, despite metric learning or not.
lthough MVMIML in the Birds dataset is not top-ranked, they are
lose to the best results. Therefore, MVMIML improves the classification
erformance of multi-instance learning. Further, six images from three
atasets are displayed in Table 5 with their corresponding nearest
mages under different views. It implies that our method can truly find

data-dependent metric to make similar images closer and boost the
lassification performance.

. Compared with metric-learning
Traditionally, metric learning methods are proposed for standard

lassification, in which each pattern is a single feature vector. However,
n the above feature extraction, each image is represented by a bag
ith multiple instances. To adapt the metric learning scenario, we
pply the framework of bag-of-words (Li & Perona, 2005) to transform
ach image into a single vector. Five classical metric learning methods,
.e., ITML (Davis et al., 2007), LMNN (Weinberger et al., 2005), Boost-
etric (Shen et al., 2009), distance metric learning with eigenvalue

ptimization (DML-eig) (Ying & Li, 2012) and SERAPH (Niu et al.,
014) are selected and 𝑘NN with Euclidean distance (Eucl) is used as a
aseline. The classification performances of these methods are shown in
able 6. The best results of single-view methods and of all the methods

re highlighted in italics and in bold respectively. According to Table 6,
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Table 5
Performance of the images associated with its nearest images in different views.

Image HOG SIFT LBP H&S H&L S&L H&S&L
Table 6
Classification accuracy of metric learning methods on single-view and multi-view.

Datasets View Eucl ITML LMNN BoostMetric DML-eig SERAPH SVMIML MVMIML

Corel
(300&10)

HOG 42.33 ± 4.73 48.33 ± 1.53 46.00 ± 3.46 40.00 ± 2.00 34.00 ± 3.61 47.33 ± 3.21 44.00 ± 1.00
60.00 ± 1.73SIFT 21.67 ± 2.89 28.33 ± 2.89 27.00 ± 3.61 28.67 ± 4.51 18.33 ± 2.08 26.33 ± 2.89 42.98 ± 3.32

LBP 51.33 ± 5.13 57.67 ± 9.29 59.67 ± 4.16 46.67 ± 4.16 38.00 ± 4.36 58.00 ± 7.55 59.33 ± 5.77

Caltech
(300&6)

HOG 80.33 ± 1.53 82.67 ± 0.58 83.33 ± 0.58 80.67 ± 2.08 66.67 ± 1.53 86.33 ± 2.08 80.33 ± 2.52
87.00 ± 4.58SIFT 42.67 ± 3.21 62.33 ± 6.51 67.00 ± 4.58 61.00 ± 6.08 47.67 ± 8.96 66.33 ± 5.51 67.67 ± 1.53

LBP 74.67 ± 4.16 79.00 ± 3.00 80.67 ± 2.08 77.33 ± 8.33 57.00 ± 2.00 80.67 ± 2.52 78.33 ± 3.06

Birds
(600&6)

HOG 26.33 ± 2.93 30.67 ± 6.58 28.00 ± 1.80 25.83 ± 2.25 23.33 ± 2.52 30.17 ± 2.02 32.67 ± 3.62
43.17 ± 2.52SIFT 33.00 ± 8.89 32.17 ± 3.75 40.00 ± 8.05 35.50 ± 2.65 27.00 ± 5.07 40.00 ± 5.77 44.67 ± 3.06

LBP 27.50 ± 0.50 28.50 ± 3.12 30.17 ± 0.57 25.17 ± 2.57 22.83 ± 4.37 29.83 ± 2.57 33.67 ± 3.01

Butterfly
(280&7)

HOG 46.42 ± 4.82 48.21 ± 2.65 42.16 ± 7.29 38.56 ± 2.69 29.27 ± 7.66 43.58 ± 7.01 48.22 ± 2.02
73.57 ± 2.29SIFT 49.99 ± 5.12 56.42 ± 1.39 54.98 ± 4.12 57.85 ± 1.71 35.00 ± 6.53 55.70 ± 2.92 71.79 ± 2.44

LBP 20.01 ± 1.75 20.37 ± 2.25 26.06 ± 3.96 17.16 ± 4.99 20.72 ± 2.72 25.35 ± 5.24 24.64 ± 2.15

Galaxy
(210&3)

HOG 75.24 ± 5.77 75.24 ± 2.97 75.24 ± 4.59 78.10 ± 2.97 60.48 ± 3.60 76.67 ± 3.60 78.10 ± 1.82
85.71 ± 3.78SIFT 55.24 ± 6.75 57.14 ± 5.15 67.62 ± 0.82 67.14 ± 2.86 47.62 ± 1.65 68.57 ± 1.43 62.86 ± 1.43

LBP 63.33 ± 1.65 64.76 ± 3.60 69.05 ± 8.12 66.19 ± 2.18 59.52 ± 4.59 71.43 ± 4.95 82.38 ± 5.87

FERET
(150&2)

HOG 70.67 ± 9.02 78.00 ± 4.00 78.67 ± 4.16 78.00 ± 2.00 62.00 ± 8.72 80.00 ± 5.29 82.67 ± 2.31
84.00 ± 2.00SIFT 67.33 ± 2.31 66.00 ± 2.00 71.33 ± 7.57 64.00 ± 6.93 62.00 ± 4.00 74.67 ± 10.3 76.00 ± 5.29

LBP 64.00 ± 6.93 54.67 ± 13.3 71.33 ± 4.62 70.00 ± 4.93 62.67 ± 7.57 72.00 ± 5.29 76.00 ± 2.00
our proposed SVMIML model behaves the best on 13 out of 18 (72.22%)
cases for all the datasets with diverse features. To incorporate three
views, MVMIML obtain the highest results on 17 out of 18 the cases
(94.44%).

C. Compared with multi-instance metric learning

We compare the performance of MVMIML with that of two multi-
instance metric learning methods in this section. The first one is MIMEL
which introduces the idea of ITML (Davis et al., 2007) into multi-
instance problem (Xu et al., 2011). And the second one is metric learn-
ing for multi-instance with collapsed bags (MIMLCB), where 𝑘−means
is employed to get collapsed bags and the idea of maximizing relative
bag distance is applied on the transformed bags (Li et al., 2017).
The classification results are recorded in Table 7. From this table, we
can observe that MVMIML yields better performance than MIMEL and
MIMLCB. The reason may be that the information from multiple views
can contribute to the performance improvement. MIMEL behaves much
worse than MIMLCB, which may result from the application of distance
10

function 𝐷𝑎𝑣𝑒.
4.4.2. Ablation analysis
To clearly explain the individual contribution of metric learning

and multi-view learning, ablation analysis will be made based on the
results in Table 4. In single-view learning, SVMIML performs better
than 𝑘NN+𝐷𝑎𝑚 in most cases, which verifies the effectiveness of metric
learning in single view multi-instance learning. Metric learning can be
used to build bridges between instances, and the designed distance
measure 𝐷𝑎𝑚 is efficient. Comparing SVMIML and MVMIML, the tech-
nique of metric learning is both implemented, but different in the
number of views. It can be seen that MVMIML with multiple views
often achieves higher accuracy than SVMIML. It indicates that our
method can extract useful information from all the views and assemble
them effectually, based on the inference that different features are
complementary to each other.

4.4.3. Influence of parameters
In this section, the influence of parameters 𝜆 and 𝜇 and learning

rates 𝜂1 and 𝜂2 are explored. The iteration numbers 𝑄 and 𝑅 are the
same as the above experiments. As previously mentioned, 𝜆 and 𝜇

are both selected from the set {0.01, 0.1, 1}. Fixed the combination of
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Table 7
Comparison of the classification accuracy of multi-instance metric learning methods and MVMIML.

Datasets Single view Multi-view (MVMIML)

Method HOG SIFT LBP H&S H&L S&L H&S&L

Corel
(300&10)

MIMEL 25.00 ± 7.81 21.33 ± 5.69 17.00 ± 9.17 52.33 ± 6.11 55.33 ± 2.52 57.67 ± 6.43 60.00 ± 1.73MIMLCB 43.33 ± 3.06 43.00 ± 4.58 54.00 ± 2.00

Caltech
(300&6)

MIMEL 46.67 ± 4.93 22.00 ± 5.00 35.67 ± 5.69 86.00 ± 2.65 85.00 ± 6.08 77.33 ± 1.53 87.00 ± 4.58MIMLCB 80.00 ± 3.00 66.67 ± 1.53 78.67 ± 3.21

Birds
(600&6)

MIMEL 18.00 ± 3.04 27.33 ± 3.25 17.00 ± 1.00 42.50 ± 3.28 33.67 ± 3.06 44.50 ± 2.29 43.17 ± 2.52MIMLCB 34.33 ± 2.25 44.50 ± 3.12 33.83 ± 3.06

Butterfly
(280&7)

MIMEL 12.85 ± 2.82 28.94 ± 4.76 18.22 ± 1.92 73.22 ± 0.93 43.25 ± 8.13 67.14 ± 4.15 73.57 ± 2.29MIMLCB 47.86 ± 2.44 70.71 ± 1.78 22.85 ± 1.50

Galaxy
(210&3)

MIMEL 49.05 ± 8.12 44.29 ± 3.78 43.33 ± 13.5 81.90 ± 4.12 83.33 ± 3.60 84.29 ± 5.71 85.71 ± 3.78MIMLCB 78.10 ± 0.82 62.38 ± 1.65 81.90 ± 8.37

FERET
(150&2)

MIMEL 50.00 ± 3.46 56.67 ± 17.2 50.00 ± 3.46 84.00 ± 8.72 81.33 ± 1.15 78.00 ± 4.00 84.00 ± 2.00MIMLCB 82.67 ± 2.31 76.00 ± 7.21 71.33 ± 5.03
Fig. 9. Influence of the penalty parameters and learning rates.
Fig. 10. Influence of instance number in HOG and LBP features. In all the subfigures, the instance numbers of SIFT feature are the same as previous classification. In (a), (b), (c)
and (d), the instance numbers of LBP feature are all fixed as 16. In (e), (f), (g) and (h), the instance numbers of HOG feature are all fixed as 9.
e
a
t

(𝜂1, 𝜂2) as (0.01, 0.01), (0.05, 0.05) and (0.1, 0.1), the accuracy curve and
corresponding standard deviation with respect to the combination of 𝜆
and 𝜇 are plotted in Fig. 9. Each subfigure corresponds to a selected
dataset. The axis of 𝑥 denotes nine combinations of 𝜆 and 𝜇. For
every combination of 𝜂1 and 𝜂2, the accuracy fluctuates slightly, which
indicates that our model is robust to the penalty parameters when they
are sufficiently small. For each combination of 𝜆 and 𝜇, the accuracy
does not change drastically with respect to 𝜂1 and 𝜂2. It implies that
MVMIML is insensitive to the learning rates. The faint influence of
parameters verifies the robustness of our proposed model.
11
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4.4.4. Influence of instance number

In previous feature extraction, HOG and LBP are extracted as bag-
of-words representation by dividing every image uniformly. In HOG
and LBP feature, every image contains 9 and 16 instances respectively.
Next, we will investigate the influence of instance number in each
bag. The penalty parameters 𝜆 and 𝜇 are both set to be 0.01 and
the learning rates 𝜂1 and 𝜂2 are both set to be 0.1. For HOG feature,
ach image is further divided into 4, 16, 25 and 36 cells and the
ccuracy curve of single view and multi-view (H&S&L) with respect
o instance number is depicted in Fig. 10. We can observe that the
ccuracy of single view changes slightly and the accuracy of multi-view
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remains stable. Such observation verifies the robustness of our model
to instance number of HOG feature. The model can extract information
consistently from HOG feature, and immune to the instance number.
For LBP feature, each image is further divided into 4, 9, 25 and 36
patches and the accuracy curve of single view and multi-view (H&S&L)
with respect to instance number is reported in Fig. 10. The accuracy
curve of multi-view (H&S&L) has similar fluctuation trend with the
accuracy curve of single view, but both curves have small amplitudes.
The experiments demonstrate that our model is not sensitive to instance
number, resulting from that a bag with different instance numbers can
be actually seem as the feature extraction in different scale, which will
not affect metric learning.

5. Conclusions

In this paper, we propose a new multi-view multi-instance metric
learning method named MVMIML for image classification, which inte-
grates the merits of both the multi-view multi-instance representation
and metric learning into a unified framework. Due to the merits of
bag-of-words representations and multiple views, multi-instance multi-
view features are extracted for each image. To combine multi-instance
features effectively, we design a new distance function for bags, which
calculates the weighted sum of the distance between bags from each
single view. To guarantee that every image is similar to its nearest
images, the joint conditional probability is maximized to pursue view-
dependent metrics by using metric learning technique on multiple
views. We then design the alternating iteration optimization algorithms
to solve MVMIML, and analyze its computational complexity theoret-
ically. The advantages of the newly-designed distance function and
the effectiveness of MVMIML have been confirmed in the numerical
experiments. This paper brings a new insight of utilizing the metric
learning method to handle the image datasets with multi-view multi-
instance representations. In future work, we will explore more kinds
of features and design more efficient algorithm to solve our method.
Extensions of MVMIML to the deep learning research field are also
meaningful and need to be taken into account.
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