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a b s t r a c t 

Distance metric plays a significant role in machine learning methods(classification, clustering, etc.), es- 

pecially in k -nearest neighbor classification( k NN), where the Euclidean distances are computed to decide 

the labels of unknown points. But Euclidean distance ignores the statistical structure which may help to 

measure the similarity of different inputs better. In this paper, we construct an unified framework, in- 

cluding two eigenvalue related methods, to learn data-dependent metric. Both methods aim to maximize 

the difference of intra-class distance and inter-class distance, but the optimization is considered in global 

view and local view respectively. Different from previous work in metric learning, our methods straight 

seek for equilibrium between inter-class distance and intra-class distance, and the linear transformation 

decomposed from the metric is to be optimized directly instead of the metric. Then we can effectively 

adjust the data distribution in transformed space and construct favorable regions for k NN classification. 

The problems can be solved simply by eigenvalue-decomposition, much faster than semi-definite pro- 

gramming. After selecting the top eigenvalues, the original data can be projected into low dimensional 

space, and then insignificant information will be mitigated or eliminated to make the classification more 

efficiently. This makes it possible that our novel methods make metric learning and dimension reduction 

simultaneously. The numerical experiments from different points of view verify that our methods can im- 

prove the accuracy of k NN classification and make dimension reduction with competitive performance. 

© 2016 Elsevier B.V. All rights reserved. 
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1. Introduction 

k NN is one of the most classic methods in pattern classifica-

tion and clustering [1] . It predicts the label of an unknown point

by the majority label of the point’s k nearest neighbors. In finding

these nearest neighbors, Euclidean distances will be calculated in

most cases. k NN has obtained competitive accuracy in certain tasks

despite its simple mechanism. However, the performance of k NN

classification is restrained seriously since it depends heavily on

the measurement of distance. Traditional Eculidean distance only

computes the 2-norm of the difference between two vector in-

puts mechanically, giving the same treatment to all the attributes.

It may ignore the potential statistical information or feature rela-

tions, which should be extracted to construct more advantageous

neighbourhoods for k NN. 

As a hot research topic in data mining, distance metric learning

has been extensively studied [2–6] since it can improve the per-

formance of many distance related methods in classification and

clustering, including k -nearest neighbors( k NN), k −means, etc. An
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ppropriate data-dependent metric can help to measure the simi-

arity of different examples more accurately. In supervised learn-

ng, given the labels of training inputs, a desired metric is ex-

ected to make the distance of similar points smaller than dissim-

lar points. Based on such simple idea, many researchers have pro-

osed different algorithms to learn a proper distance metric. These

ethods can be classified into two kinds: (1) Global view meth-

ds: Metric Learning with Side Information, Information-theoretic

etric learning, Metric learning with Boosting, etc.; (2) Local view

ethods: Neighborhood component analysis, metric learning for

arge margin nearest neighbor classification, etc. Metric learning

as been applied in many applications, including face verification

7] , image annotation [8] , text classification [9] . All the methods

entioned above have obtained promising performance in classifi-

ation problems. However, up to now, there are few papers paying

ttention to the potential affect of global and local view, let alone

nifying them in a framework. 

In this paper, we propose two versions of Metric Learning with

igenValue(MLEV) optimization based on global and local view, re-

pectively. The two novel approaches, named as MLEV-G(Global

ersion) and MLEV-L(Local version), are simply and directly con-

tructed to meet the objectives in metric learning. For global ver-

http://dx.doi.org/10.1016/j.knosys.2016.11.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/knosys
http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2016.11.004&domain=pdf
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ion, maximization of the difference between within-class distance

nd between-class distance is implemented to make similar points

oncentrate in a narrower range and dissimilar points have larger

istances. In local version, the objective of global perspective is

onsidered in neighbourhoods. For every input, its k nearest simi-

ar neighbors and k − 1 nearest dissimilar neighbors are selected to

ompute local inter-class distance and intra-class distance respec-

ively. The difference between the two kinds of distance will be

hen optimized to raise the number of similar points and reduce

he number of dissimilar points in the neighborhoods. The original

ositive semi-definite matrix M ∈ R n × n (the learned metric) can

e decomposed with respect to a linear transformation L ∈ R p × n 

 p ≤ n ) ( n is the number of dimension), namely, M = L � L . Then

e can solve the approaches simply by eigenvalue-decomposition

f the Lagrange function, much faster than semi-definite program-

ing and gradient descent. The methods can make metric learning

nd dimension reduction simultaneously since L can be non-square

atrix. When p < n is provided, the top p eigenvectors are se-

ected to form L , then the linear transformation L projects the orig-

nal data into lower dimensional space, discarding inconsequential

ata information. The experimental results show that our novel ap-

roaches can obtain better performance in improving k NN classi-

cation. In addition, we provide a scheme to implement the two

ethods properly since they are suitable for different data distri-

ution. When the points in the same class are clustering together,

LEV-G can get better performance than MLEV-L. But MLEV-L is

ecommended when all the data points are scattered. 

The rest of the paper is organized as follows. The background,

ncluding definitions in metric learning, metric learning methods

n global and local view, is introduced in Section 2 . In Section 3 ,

he new methods are described and formulated. Section 4 makes

umerical experiments to show the ability of our methods in im-

roving k NN classification performance. The conclusions are sum-

arized in Section 5 . 

. Background 

In this section, the definitions and terminologies of metric

earning will be claimed and some previous related works will be

ntroduced, including eigenvector methods based on distance and

etric learning in global and local view. 

.1. Definition and terminology 

For a training set with c classes 

 = { (x 1 , y 1 ) , . . . , (x m 

, y m 

) } , (1)

here (x i , y i ) ∈ R n × { 1 , 2 , . . . , c} , i = 1 , . . . , m and m is the total

umber of samples, n is the number of features. Define the fol-

owing sets 

 = { (x i , x j ) | y i = y j } (2) 

 = { (x i , x l ) | y i � = y l } (3) 

here S consists of data pairs combined by similar points and D

enotes the set of pairs of points that are dissimilar. Metric learn-

ng aims to learn an appropriate metric M with data-information

mbedded to reconstruct distance relationship by 

 M 

(x i , x j ) = 

√ 

(x i − x j ) � M(x i − x j ) (4)

n the new relationship, the distance between the pairs in S and

 has been shrunk and/or expanded as much as possible, respec-

ively. In the previous work, the researchers are striving to mini-

ize ∑ 

x i ,x j ) ∈ S 
d(x i , x j ) 
nd/or maximize ∑ 

x i ,x j ) ∈ D 
d(x i , x j ) 

n various formulas. In general, the new metric M should meet the

ollowing conditions [3,10] : 

(1) distinguishability: d M 

(x i , x i ) = 0 ; 

(2) non-negativity: d M 

( x i , x j ) ≥ 0; 

(3) symmetry: d M 

(x i , x j ) = d M 

(x j , x i ) ; 

(4) triangular inequality: d M 

(x i , x j ) + d M 

(x i , x k ) ≥ d M 

(x j , x k ) ; 

These conditions are intuitive on account of the concept of dis-

ance. In our methods, we decompose M into L � L and then 

 

2 
M 

(x i , x j ) = (x i − x j ) 
� M(x i − x j ) (5) 

= (x i − x j ) 
� L � L (x i − x j ) (6) 

= ‖ Lx i − Lx j ‖ 

2 (7) 

o the conditions (1), (2), (3) are satisfied naturally. For condition

4), 

d M 

(x i , x j ) + d M 

(x i , x k ) (8) 

= ‖ Lx i − Lx j ‖ 

2 + ‖ Lx i − Lx k ‖ 

2 (9) 

≥ ‖ Lx i − Lx j + Lx k − Lx i ‖ 

2 (10) 

= ‖ Lx k − Lx j ‖ 

2 (11) 

bviously, the learned metrics in our models are standard and can

e used to measure the distance of different points in a meaningful

ay. 

.2. Related works 

A large number of methods in metric learning have been pro-

osed to validate the efficacy of proper data-dependent distance

etric in improving the performance of k NN classification method.

hese methods can be classified into two categories: global view

nd local view. In the following paragraphs, we will first introduce

ome eigenvector related works which are established on the basis

f distance. Then metric learning models in global and local view

re analyzed and compared in detail. 

.2.1. Eigenvector related work 

Eigenvector methods are proposed to seeks for linear transfor-

ation to project the original inputs into new lower-dimensional

pace. The linear projection can reduce the noises in the data to

ake the computation easier in classification, clustering, etc. In

act, the linear transformation can be regarded as learning a data-

ependent metric. 

rincipal Component Analysis(PCA). PCA [11] is a statistical tech-

ique used to reduce dimension of high dimensional data, with

he idea of distance metric learning embedded. It looks for a lin-

ar transformation to maximize the variance of the transformed

oints. The target problem is 

ax 
L 

Tr (L � �−1 L ) (12) 

.t. LL � = I. (13) 
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where � is the covariance matrix. The solution of the problem

consists of the eigenvectors corresponding to the top eigenvalues

of �. It can be seen that the objective function measures the total

variance of the projected data, similar as maximizing the between-

class distance in metric learning. PCA is widely used in data pre-

processing to reduce data dimension, with the advantages of de-

noising and reduction of computation complexity. 

Linear Discriminant Analysis(LDA). Using the information of data la-

bels, LDA [12] maximizes the ratio of between-class distance to

within-class distance, given by 

max 
L 

Tr 

(
L � D b L 

L � D w 

L 

)
(14)

s.t. LL � = I. (15)

The best L is obtained from the combination of the important

eigenvectors of D 

−1 
w 

D b . The between-class distance D b and within-

class distance D w 

are defined as following 

D b = 

c ∑ 

k =1 

μk μ
� 
k (16)

D w 

= 

c ∑ 

k =1 

∑ 

y i = k 
(x i − μk )(x i − μk ) 

� (17)

where μk represents the centroid of the k class. In metric learning

view, LDA extracts the information of the centroid of all the classes

and makes effort s in maximizing intra-class distance and minimiz-

ing inter-class distance. This kind of distance measurement seems

‘coarse’ and ‘inaccurate’. But LDA runs with high speed since its

mechanism of linear preprocessing. 

PCA and LDA are two inchoate methods in exploring appro-

priate metric. PCA is implemented in an unsupervised way and

then it can not make use of label information [13] , which may re-

strains its performance. LDA often performs bad in pattern recog-

nition [14,15] , which may result from its improper measurement of

between-class and within-class distance. 

2.2.2. Metric learning in global view 

Global metric learning optimizes and constrains all the criteri-

ons based on the whole dataset. The desired metric only need to

consider adjusting the distance from a global view. The constraints

and the objective functions are often simple and concise. It pays

less attention to local structure of the data and sometimes can

not extract the information completely. Popular methods in this

area include metric learning with side information, information-

theoretic and boosting trick based metric learning. Besides, the

eigenvector related methods mentioned in the Section 2.2.1 are all

in the scope of global metric learning. 

Metric Learning with Side Information(MLSI). MLSI, proposed by

Xing etal. [16] , is an early effort in seeking for an appropriate met-

ric. Similarity side-information is utilized to define pairwise re-

lationships to learn a desired data-dependent metric to improve

accuracy in identifying clusters. They argue that an ideal metric

should satisfy that the two points in any data pair of S should be as

near as possible. Meanwhile, the distance between the two points

in any data pairs of D is supposed to be larger than a threshhold.

The idea is embodied as a semi-definite programming(SDP) prob-

lem, constructed as following 

min 

M 

∑ 

(x i ,x j ) ∈ S 
d 2 M 

(x i , x j ) (18)
.t. 
∑ 

(x i ,x j ) ∈ D 
d 2 M 

(x i , x j ) ≥ 1 (19)

M 	 0 . (20)

here d 2 
M 

(x i , x j ) = ‖ x i − x j ‖ 2 M 

= (x i − x j ) 
� M(x i − x j ) . The formula-

ion of MLSI is concise and its principle can be understood eas-

ly. However, MLSI does not make effort s in expanding intra-class

istance. The information of data structure has not been extracted

dequately. What’s more, SDP problem is hard to be solved since

ts high time complexity. And extensive experiments have shown

hat MLSI obtains low performance in improving k NN classification

17–19] . 

nformation-theoretic metric learning(ITML). ITML [20] is an

nformation-theoretic method expressed by Bregman optimization

roblem. It minimizes the relative entropy between two multivari-

te Gaussian distribution, each corresponds to a target metric M

nd a predefined metric M 0 . The entropy measures the distance of

he two Mahalanobis matrices well and it can be optimized easily

n light of its differentiability. To achieve the basic goal of metric

earning that similar points should be close and dissimilar points

hould be far from each other, ITML makes the distance of similar

nputs smaller than a relatively small value and dissimilar inputs

arger than a sufficient large value. The optimization problem is

rovided as following 

in 

M 

tr (M M 

−1 
0 ) − γ logdet (M M 

−1 
0 ) (21)

.t. d 2 M 

(x i , x j ) ≤ u, (x i , x j ) ∈ S (22)

d 2 M 

(x i , x l ) ≥ l, (x i , x l ) ∈ D (23)

here u, l are given parameters depended on the data distribu-

ion. ITML is fast and scalable since semi-definite programming

nd eigenvalue computation are not required. The formulation is

ery general and can deal with different kinds of constraints. But

n practice, it is difficult to select the trade-off γ , upper bound

 , lower bound l and the prior M 0 , which may restrict its perfor-

ance. 

etric learning with Boosting(BoostMetric). Derived from AdaBoost,

oostMetric [21,22] learns several trace-one rank-one weak met-

ics to gain the desired positive semi-definite matrix. The learning

rocess is efficient and scalable. It is proposed based upon boost-

ng technique, aiming at maximizing the relative difference be-

ween intra-class distance and inter-class distance. A set of triplets

 = { (x i , x j , x l ) | (x i , x j ) ∈ S, (x i , x l ) ∈ D } is constructed, and the pri-

ary optimization problem is formulated with applying exponen-

ial loss 

in 

M 

log 

( | G | ∑ 

r=1 

exp (−ρr ) 

) 

+ c Tr (M) (24)

.t. ρr = < A r , M >, r = 1 , . . . , | G | (25)

M 	 0 (26)

here A r = (x i − x l )(x i − x l ) 
� − (x i − x j )(x i − x j ) 

� , r = 1 , . . . , | G | . | G |

s the size of the set G . BoostMetric does not need to consider find-

ng positive semi-definite matrix but only optimize entropy maxi-

ization problem with coordinate descent or eigenvalue decompo-

ition. But it requires a great many iterations for high-dimensional

atasets. 
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Fig. 1. Geometric illustration of the mechanism of MLSI and MLEV-G. The white 

and black arrows denote within-class and between-class distance respectively. MLSI 

and MLEV-G both aim to minimize the within-class distance. In extracting the infor- 

mation of between-class distance, MLSI just enforces 
∑ 

d i D ≥ 1 , but MLEV-G seeks 

for a balance between 
∑ 

d i S and 
∑ 

d i D . 
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Motivated by the idea of support vector machine, a margin-

ased approach called MLSVM is provided [23] . It separates dif-

erent inputs by a margin, leading to quadratic semi-definite pro-

ramming formulation. More SVM based methods are studied later

24–26] . KISS(keep it simple and straightforward) metric learning

27] constructs likelihood ratio test to decide whether a pair points

re similar or not. Eigenanalysis is used to obtain the mahalanobis

etric on the cone of positive semidefinite matrices. Some other

ethods in global perspective are also proposed, sparse metric for

etric learning and dimension reduction [28–30] , learning metric

rom network [31,32] , metric learning with kernel framework [33] . 

.2.3. Metric learning in local view 

From a local point of view, metrics can be learned by optimiz-

ng and constraining the rules based on local neighborhood. Local

ata structure or distribution can be discovered in such framework.

Local metric learning constructs optimization problem based on

ocal data distribution and only constrains the distance from neigh-

orhood perspective. All the local structure information should be

aken into account to meet the constraints. In fact, it possesses

ore sophisticated mechanism than global metric learning. And

hen local methods can improve the k NN performance better than

lobal ones some times since k NN is of the principle of voting in

he set of k nearest points. Classical methods contain neighborhood

omponent analysis, large margin nearest neighbor classification. 

eighborhood component analysis(NCA). Goldberger et.al present

eighborhood component analysis(NCA) [34] to learn a low-rank

uadratic metric, which aims to directly optimize leave-one-out

erformance of k NN method. In NCA, every input x i give a prob-

bility p ij to another point x j to decide the likelihood of x j is a

eighbor of x i . The p ij is defined by Euclidean distance after trans-

ormation 

p i j = 

exp (−‖ Lx i − Lx j ‖ 

2 ) ∑ 

k � = i 
exp (−‖ Lx i − Lx k ‖ 

2 ) 
, p ii = 0 . (27)

here L is the decomposition of the desired metric M = L � L . The

oal of NCA is to maximize the numbers of correctly labeled

oints, leading to the following problem 

ax 
L 

f (L ) = 

∑ 

i 

∑ 

y j = y i 
p i j (28) 

he problem can be optimized simply by gradient descent algo-

ithm. NCA is a classic method in metric learning based on prob-

bility theory, utilizing local data information. NCA can be used to

educe data dimension since it directly optimizes the linear trans-

ormation L . However, memory overflow often happens when it

eals with high-dimensional data. 

arge margin nearest neighbor(LMNN). Inspired by the research

n neighborhood component analysis, LMNN constructs a semi-

efinite programming problem to maximize margin of dissimilar

oints by introducing a convex hinge loss function and minimize

he distance of any two close and similar points. LMNN defines a

ew terminology called target neighbors for every x i (i = 1 , . . . , m ) ,

hich means the k nearest points with the same label as x i . The

lgorithm aims to minimize the total distance between the target

eighbors and x i . Since LMNN is proposed to improve the perfor-

ance of k NN classification, it sets the goal that the points with

ifferent labels should have larger distance to x i than any target

eighbor. The idea of LMNN leads to the following SDP problem 

in 

M 

∑ 

(x i ,x j ) ∈ S 
ηi j d 

2 
M 

(x i , x j ) + c 
∑ 

(x i ,x j ) ∈ S 
(x i ,x l ) ∈ D 

ηi j ξi jl (29) 
.t. d 2 M 

(x i , x l ) − d 2 M 

(x i , x j ) ≥ 1 − ξi jl (30) 

ξi jl ≥ 0 (31) 

M 	 0 (32) 

here ηij indicates whether x j is a target neighbor of x i . If the

roposition is true, ηi j = 1 , else ηi j = 0 . Due to the extraction of

ocal data information, LMNN performs well in practice. Unfortu-

ately, overfitting often occurs owing to the absence of regulariza-

ion term in the objective function. Several extensions on LMNN

re introduced to improve LMNN, including solving LMNN more

fficiently [35,36] , introducing kernel into LMNN [37] , multi-task

ersion of LMNN [38] . Neighborhood repulsed metric learning [39] ,

arge margin multi-metric learning [40] are also established on the

ocal view. 

All the previous work are constructed on global or local view

ndividually, which may limit their performance when the data dis-

ribution is unclear. Then we propose an unified framework, in-

luding two simple and straightforward models, based on global

nd local view respectively. The two methods are complementary

o each other, considering that the information of data structure

an be easier extracted from global or local perspective. Our meth-

ds can both learn data-dependent metric and reduce dimension,

uperior to most of the above mentioned methods. 

. Global and local metric learning with eigenvectors 

In this section, we will clearly illustrate our novel approaches in

etric learning and their advantages in advancing the performance

f k NN classification. 

.1. Global version 

Unlike MLSI, we expect to minimize the distance of similar

oints and maximize the distance of dissimilar points simultane-

usly. The constraints of MLSI on dissimilar points are moved into

he objective function to make two-sides effort s in adjusting the

riginal distance. The geometric illustration of MLSI and MLEV-G

s displayed in Fig. 1 . The principle of MLSI is shink the inter-class

istance as much as possible under the condition that the total dis-

ance of dissimilar inputs is larger than 1. The key point of MLSI is

o gather every class as a cluster with minimal diameter. The mo-

ivation of the global version metric learning with eigenvectors is
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Fig. 2. Geometric illustration of LMNN and MLEV-L. In LMNN, for every x l and its 

neighborhood, all the similar points will be pulled nearer to x l and any imposters 

will be pushed away by a large margin. In MLEV-L, for every x l , k nearest similar 

points and k − 1 nearest dissimilar points are considered. MLEV-L balances the local 

inter-class distance and intra-class distance, namely, maximizing d D − d S . 
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to find a tradeoff between inter-class distance and intra-class dis-

tance, leading to the optimization of the difference between them.

In a global view, an ideal data-dependent matrix M can be

learned by the following optimization problem 

min 

M 

∑ 

(x i ,x j ) ∈ S 
d 2 M 

(x i , x j ) − λ
∑ 

(x i ,x j ) ∈ D 
d 2 M 

(x i , x j ) (33)

s.t. M 	 0 (34)

where λ is a trade-off in attuning the importance of inter-class

distance and intra-class distance. Since there exist L satisfy that

M = L � L, so 

d 2 M 

(x i , x j ) = ‖ Lx i − Lx j ‖ 

2 (35)

which verify that the distance between two points with respect to

M can be converted into Euclidean distance by a linear transforma-

tion L . 

Let L = (w 1 , . . . , w p ) 
� , where w i ∈ R n , p ≤ n , then 

‖ Lx i − Lx j ‖ 

2 = 

p ∑ 

k =1 

(w 

� 
k x i − w 

� 
k x j ) 

2 (36)

= 

p ∑ 

k =1 

w 

� 
k (x i − x j )(x i − x j ) 

� w k (37)

To avoid over-fitting, we restrict that w 

� 
k 

w k = 1 , k = 1 , . . . , p. The

problems (33) and (34) can be written as 

min 

w 

p ∑ 

k =1 

w 

� 
k (Q − λB ) w k (38)

s.t. w 

� 
k w k = 1 , k = 1 , . . . , p (39)

where 

Q = 

∑ 

(x i ,x j ) ∈ S 
(x i − x j )(x i − x j ) 

� (40)

B = 

∑ 

(x i ,x j ) ∈ D 
(x i − x j )(x i − x j ) 

� (41)

To solve the problem (38) and (39) , we construct the following La-

grange function 

F = 

p ∑ 

k =1 

w 

� 
k (Q − λB ) w k −

∑ 

k 

αk (w 

� 
k w k − 1) (42)

and have the KKT conditions 

(Q − λB ) w k = αk w k (43)

Then the dual problem is 

max 
w,α

p ∑ 

k =1 

αk (44)

s.t. (Q − λB ) w k = αk w k , (45)

w 

� 
k w k = 1 , k = 1 , . . . , p (46)

Notably, the solutions for αk , k = 1 , . . . , p in (44) –(46) are the p

largest eigenvalues of the matrix Q − λB . Then the linear transfor-

mation L can be obtained from the combination of the eigenvec-

tors corresponding to these eigenvalues. Since redundant or pid-

ding data information may distort data structure, it will worsen

the accuracy of k NN classification. We can weaken such negative

effect by setting p < n to transform raw data into lower dimen-

sional space. The algorithm can learn data-dependent matrix and

make dimension reduction simultaneously. 
.2. Local version 

The global version of metric learning with eigenvectors only

tilizes global distance information. However, for k NN classifica-

ion, the label of a unknown point is determined by the majority

f its local neighbors. So the extraction of local data information

an help to make greater improvements on k NN method. Inspired

y the local idea of relative distance in LMNN, local version of met-

ic learning with eigenvectors is presented, which shrink the inter-

lass distance and expand the intra-class distance in all the parti-

ioned local regions. In Fig. 2 , we explain the geometry mechanism

f LMNN and our local version method. For every point x l and its

ocal neighborhood, LMNN pulls the target neighbors as near as

ossible and separate the points with different labels from x l by a

argin. Once the desired metric is learned, k NN performance can

e improved obviously. 

In MLEV-L, for any point x l , define a similar neighborhood S k 
l 

hich contains k nearest neighbors with the same label as x l and

 dissimilar neighborhood D 

k 
l 

contains k − 1 nearest points with

ifferent labels from x l . The two sets are not intersect with each

ther. A desired metric should make contribution to pulling the

oints in S k 
l 

nearer to x l and enforcing the points in D 

k 
l 

have larger

istance to x l . 

From a local view, we can learn matrix M by 

in 

M 

∑ 

x l 

⎛ 

⎝ 

∑ 

x i ∈ S k l 

d 2 M 

(x l , x i ) − η
∑ 

x j ∈ D k l 

d 2 M 

(x l , x j ) 

⎞ 

⎠ (47)

.t. M 	 0 (48)
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imilarly, the above problem can be rewritten as 

in 

w 

p ∑ 

k =1 

w 

� 
k (H − ηG ) w k (49) 

.t. w 

� 
k w k = 1 , k = 1 , . . . , p (50) 

here 

 = 

∑ 

x l 

∑ 

x i ∈ S k l 

(x l − x i )(x l − x i ) 
� (51) 

 = 

∑ 

x l 

∑ 

x j ∈ D k l 

(x l − x j )(x l − x j ) 
� (52) 

he dual problems can be obtained by constructing Lagrange fun-

ion 

ax 
w,β

p ∑ 

k =1 

βk (53) 

.t. (H − ηG ) w k = βk w k , (54) 

w 

� 
k w k = 1 , k = 1 , . . . , p (55) 

he above problem can be solved similarly as MLEV-G. It should

e noted that MLEV-L need to look for 2 k − 1 nearest neighbors

sing Euclidean distance. But after metric learning, the neighbors

ay change because of the new distance metric. To deal with such

roblem, L is iteratively learned until convergence in the learning

rocedure. Similar as MLEV-G, the local method can also make di-

ension reduction when p < n is set. 

.3. Model comparison and analysis 

We will analyze the two algorithms in an unified framework.

oth aim to maximize the difference between intra-class distance

nd inter-class distance, but in global view and local view re-

pectively. They extract different data information to realize the

ame goal, similar points are pulled closer and different labeled

oints are pushed further. MLEV-G and MLEV-L are inspired by

LSI and LMNN respectively, but there are essential difference be-

ween them, including the objective functions, the constraints on

he inter-class distance and intra-class distance, the solution for

he optimization(distance metric or linear transformation): 

• In light of the decision rule in k NN classification, our ap-

proaches are proposed base on simple ideas, similar points(with

the same label) should be as near as possible and dissimi-

lar points(different labels) should have large distance in global

view or local region. In this paper, we just hope to maximize

the difference between intra-class distance and inter-class dis-

tance. In MLSI and LMNN, both expect to minimize the inter-

class distance in the objective functions, but put the intra-class

distance in the constraints, which may underestimate the effect

of maximizing intra-class distance and ignore balancing inter-

class and intra-class distance. 

• MLSI and LMNN put different constraints on distance. MLSI en-

forces that the between-class distance should larger than one in

macroscopic view, which can not ensure that different classes

are far from each other. LMNN builds a relative distance rela-

tionship in microscopic view, namely, the distance between dis-

similar points in neighborhood is one unit larger than the dis-

tance of similar points. This two kinds of constraints are both

difficult to be implemented, leading to SDP problems, which

are solved with high complexity. In our methods, the objec-

tive function is only subjected to the constraint that ensure the
property of semi-definite positive. The constraint can be further

transformed into an equality related with linear transformation,

facilitating the construction of eigenvalue problem. 

• Learning the original metric M with the character of semi-

definite positive are hard to achieved in both MLSI and LMNN.

Since any semi-definite positive matrix can be decomposed into

M = L � L (L ∈ R p×n ) , making the new distance be the Euclidean

distance in transformed space x → Lx . Then we can establish

optimization problem in terms of L and cast off the constraints

on M . More importantly, our methods can make dimension re-

duction when p < n is set. It can make it easily to deal with

high-dimensional datasets and depress the adverse impact of

redundant features. 

The computational complexities of the two approaches both

ontain two parts, calculation of the intra-class distance and inter-

lass distance and eigenvalue decomposition. The time complex-

ty of MLEV-G and MLEV-L is O (m 

2 n 2 ) + O (n 3 ) and O (Sm 

2 n 2 ) +
 (Smn 3 ) respectively, where S is the iteration number in MLEV-L.

t should be noted that the computational cost of MLEV-L is nearly

 times larger than that of MLEV-G. 

In a word, the two metric learning methods with eigenvalue op-

imization are different from the previous ones and they have the

ollowing advantages: (1) The formulations of MLEV-G and MLEV-L

re simple and can be solved only by eigenvalue-decomposition ;

2) The two proposed methods are both optimized with respect to

 but not M , making them be able to implement dimension reduc-

ion when L is not square. The mechanism of reducing dimension

an depress the negative impact of noise sometimes. (3) MLEV-G

nd MLEV-L are constructed on the basis of global and local view

espectively. They are complementary to each other, suitable for

ore kinds of data distribution. 

. Experiments 

In this section, comprehensive numerical experiments on

enchmark datasets, Letter recognition, and dimensional reduction

ill be made to verify that the new proposed approaches can both

mprove k NN performance and make dimension reduction effec-

ively. All the experiments are made on MATLAB 2015a(Lenovo PC,

ntel Core i5, 2 cores with 3.10GHz, 8GB RAM). 

.1. Benchmark datasets 

We select 17 benchmark datasets from the UCI Machine Learn-

ng Repository to evaluate the global and local version of our new

lgorithm, MLEV-G and MLEV-L . The selected datasets are all low

imensional with different sizes and classes, listed in Table 1 . Ev-

ry dataset is randomly splitted with 70% and 30% of the instances,

sed for training and test severally. We compare our new methods

ith five previous classical methods, including k NN with the stan-

ard Euclidean distance as the baseline method and MLSI, ITML,

MNN, BoostMetric . All the methods have the same partitions on

very dataset. 

For all the methods, k is set to be 3 in k NN classification. And

he test error is used as the index to assess the performance of

hese methods: 

est error = 

n e ∑ 

i =1 

� y i � = y ∗i � /n e 

here � A � is an indicator function, its value is 1 if A is true, oth-

rwise 0. n e is the number of test points. The classification results

re summarized in Table 1 . All the errors are obtained from the

ean of the results on 10 times runs. The experimental settings

or all the methods, except the parameter-free algorithm MLSI,

re as following: In ITML, γ is selected from searching the set
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Table 1 

Error rates of different metric learning methods on Benchmark Datasets. 

Dataset inst. × attr. Eculidean MLSI ITML LMNN BoostMetric MLEV-G MLEV-L 

WPBC 198 × 33 26 .27 ± 3.77 28 .47 ± 5.10 28 .64 ± 3.61 27 .46 ± 4.65 27 .80 ± 5.07 24 .58 ± 3.12 24 .24 ± 3.75 

Sonar 208 × 60 18 .87 ± 6.23 25 .97 ± 5.51 21 .61 ± 7.65 17 .10 ± 5.55 14 .52 ± 4.93 15 .48 ± 4.82 18 .71 ± 6.46 

Spectf 267 × 44 27 .50 ± 4.71 22 .38 ± 3.88 28 .38 ± 4.08 22 .13 ± 4.13 23 .50 ± 3.90 26 .00 ± 4.36 26 .25 ± 4.41 

Heart 270 × 13 20 .99 ± 2.85 21 .11 ± 3.47 22 .35 ± 2.94 20 .86 ± 3.21 21 .73 ± 5.15 20 .12 ± 2.61 18 .64 ± 3.21 

Hungarian 294 × 13 21 .25 ± 2.84 19 .77 ± 3.83 22 .50 ± 3.07 20 .68 ± 3.63 20 .57 ± 2.96 21 .48 ± 3.23 20 .57 ± 2.54 

Heartc 303 × 13 21 .33 ± 2.61 22 .67 ± 3.36 23 .22 ± 3.33 21 .11 ± 3.05 20 .67 ± 2.04 21 .33 ± 3.39 18 .11 ± 2.67 

Dermatology 366 × 34 2 .57 ± 0.58 9 .45 ± 3.41 2 .75 ± 0.86 3 .67 ± 1.22 3 .49 ± 1.61 2 .57 ± 0.72 2 .75 ± 0.75 

WDBC 569 × 30 3 .88 ± 1.12 3 .94 ± 1.21 4 .47 ± 1.80 4 .06 ± 0.70 3 .94 ± 1.11 3 .88 ± 1.12 3 .88 ± 1.12 

Blood 748 × 4 26 .52 ± 2.31 31 .47 ± 16.5 26 .70 ± 1.83 27 .01 ± 2.21 25 .98 ± 2.67 24 .02 ± 2.25 24 .87 ± 1.44 

Pima 768 × 8 26 .13 ± 1.97 27 .57 ± 2.42 28 .30 ± 2.79 25 .57 ± 1.58 26 .35 ± 2.18 25 .48 ± 1.52 26 .65 ± 2.29 

German 10 0 0 × 20 27 .67 ± 2.50 28 .10 ± 2.20 27 .37 ± 2.51 27 .37 ± 2.66 27 .87 ± 2.37 27 .67 ± 2.65 26 .93 ± 2.28 

Parkinson 1040 × 25 34 .97 ± 2.19 37 .79 ± 2.49 34 .97 ± 2.67 34 .29 ± 1.93 33 .37 ± 2.93 34 .78 ± 2.03 34 .55 ± 1.86 

Iris 150 × 4 4 .67 ± 2.21 6 .00 ± 4.45 4 .67 ± 2.66 3 .33 ± 2.16 4 .00 ± 2.04 4 .44 ± 2.34 4 .00 ± 2.30 

Thyroid 215 × 5 5 .78 ± 2.34 4 .06 ± 1.68 4 .38 ± 2.42 6 .41 ± 2.80 4 .22 ± 2.45 5 .63 ± 2.35 6 .09 ± 2.60 

Glass 214 × 9 32 .03 ± 7.19 33 .75 ± 6.47 39 .53 ± 10.83 30 .63 ± 4.90 32 .19 ± 4.55 31 .41 ± 7.23 31 .09 ± 6.89 

Vowel 528 × 10 8 .16 ± 2.98 10 .63 ± 2.60 10 .76 ± 3.43 9 .56 ± 3.67 7 .47 ± 3.68 7 .47 ± 2.58 7 .34 ± 2.18 

Segment 2310 × 19 3 .95 ± 0.59 5 .61 ± 0.85 3 .71 ± 1.13 2 .94 ± 0.53 2 .90 ± 0.70 3 .81 ± 0.64 3 .95 ± 0.59 

Table 2 

Average CPU time(seconds) of different metric learning methods. 

Dataset MLSI ITML LMNN BoostMetric MLEV-G MLEV-L 

WPBC 0 .57 0 .05 0 .06 0 .96 0 .02 0 .23 

Sonar 17 .91 0 .08 0 .06 0 .84 0 .03 0 .44 

Spectf 0 .92 0 .06 0 .07 0 .86 0 .03 0 .52 

Heart 0 .96 0 .04 0 .10 0 .01 0 .02 0 .31 

Hungarian 1 .06 0 .04 0 .10 0 .22 0 .02 0 .34 

Heartc 1 .20 0 .04 0 .11 0 .01 0 .02 0 .36 

Dermatology 17 .09 0 .05 0 .03 0 .62 0 .04 0 .73 

WDBC 4 .73 0 .05 0 .12 0 .93 0 .06 0 .77 

Blood 23 .40 0 .04 0 .44 0 .01 0 .05 0 .90 

Pima 7 .80 0 .04 0 .52 0 .01 0 .06 1 .18 

German 12 .23 0 .05 0 .62 0 .05 0 .10 2 .38 

Parkinson 77 .02 0 .05 0 .84 1 .49 0 .12 1 .54 

Iris 0 .43 0 .05 0 .02 0 .01 0 .01 0 .14 

Thyroid 0 .65 0 .05 0 .06 0 .04 0 .02 0 .20 

Glass 0 .97 0 .07 0 .04 0 .18 0 .02 0 .13 

Vowel 5 .94 0 .25 0 .80 0 .02 0 .04 0 .66 

Segment 204 .22 0 .15 2 .70 1 .30 0 .30 5 .26 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 

Total score of Wilcoxon significance 

test. 

Methods Score 

Eculidean 51 .0 

MLSI 37 .0 

ITML 40 .0 

LMNN 54 .5 

BoostMetric 58 .5 

MLEV-G 57 .0 

MLEV-L 59 .0 
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g  
{ 10 −4 , . . . , 10 4 } ; The settings for LMNN follow [14] ; The trade-off

v = 10 −7 and the maximum iterations is 500 in BoostMetric. For

MLEV-G and MLEV-L, the penalty parameter λ, η are both chosen

from { 10 −6 , . . . , 10 3 } . It is claimed that MLEV-G and MLEV-L with

non-square L is of benefit to denoising. The dimensional parameter

p is assigned to the multiplication of 0.9 and the feature numbers,

which means that the top 90% significant data information is used

to make classification. In Table 1 , MLEV-L obtains the lowest error

on 6 out of 17 datasets. And MLEV-G performs only next to MLEV-

L. Table 2 shows the average training time of these methods. It

is can be seen that MLEV-G is the fastest algorithm since it only

need to solve eigenvalue problems using global information. ITML

and LMNN are a little slower than MLEV-G. MLEV-L need search k

nearest neighbors, resulting in more training time than the global

version method. 

Next, we make Wilcoxon test [41,42] to examine the statistical

significance, with a significance level of 0.1. Each pair of methods

is selected to make comparison on each dataset. For two methods,

A and B, the significantly better one will get 1 point and the other

gets 0. If there is no significant difference between A and B, each

gets 0.5 point. We report the total points of every method in the

Table 3 . MLEV-L gets the highest score with 59 points, followed

by BoostMetric and MLEV-G. It is verified that our framework can

obtain consistent performance in classification. 

Comparing of MLEV-G and MLEV-L, they perform different on

different datasets. It is inferred that global and local view methods

are fit for distinct data distribution. To prove our conjecture, we

d  
se t-SNE [43] to visualize data distribution in a two-dimensional

ap. Ten datasets are selected, including Sonar, Dermatology, Pima,

hyroid, Segment, WPBC, Heart, Heartc, German, Parkinson. MLEV-

 performs better on the former five datasets and MLEV-L obtains

ower error rates on the latter five. The maps of data distribution

re shown in the Fig. 3 . In the former five maps, data points in

he same class cluster together into one or few clusters. Then in

 local view, every point has nearly zero dissimilar neighbors, so

LEV-L cannot make most use of the data information. In the lat-

er five maps, the examples scatter loosely. In a global view, it may

e very hard to find a metric to transform the data into disjoint

lusters. MLEV-L is more suitable to deal with such problems. We

ive instructions on how to use our model: (1)Use t-SNE to map

ata into a 2D plane; (2) If the data points distribute in a disor-
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Fig. 3. Data distribution in 2D plane. 

Fig. 4. Influence of penalty parameters. 
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erly condition, MLEV-L is recommended to implement, otherwise

LEV-G. 

We also investigate the influence of the penalty parameters in

he method. Five-fold cross validation and 90% feature selection are

ade on 6 datasets. The parameters are varying from 10 −6 to 10 3 

nd the corresponding test errors are plotted in Fig. 4 . MLEV-G and

LEV-L have similar trends with the variation of the parameters.

he best performance is always achieved when the penalties near

. From 10 −6 to 10 0 , the test error declines slightly. When the pa-

ameter is larger than 10, the error surges. 

The above results prove that: (1) MLEV-G and MLEV-L can

mprove k NN classification with competitive performance, which

erify that contracting inter-class distance and expanding intra-

lass distance are both important to form favorable neighborhood

or the projected data points; (2) Metric learning with eigenvalue

ptimization is much faster than semi-definite programming; (3)

p  
earning with Non-square linear transformation L is helpful in de-

oising; (3)Metric learning method constructed on global or local

iew is suitable for different data distribution. 

.2. Letter recognition 

Identifying a number or a letter, formed by a lot of black-and-

hite rectangular pixel, is a common problem in machine learning.

he distance between different letters or numbers can be designed

y metric learning. A letter recognition dataset(download from the

CI machine learning datasets) is selected to test the ability of our

ew methods. The task is to identify each of the pixel set as one

f the 26 capital letters in the English alphabet. The images are

isplayed in 20 different fonts and every letter within these 20

onts is randomly distorted to produce a file of 20,0 0 0 unique data

oints. The features of each point are transformed into 16 numeri-
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Table 4 

Error rates on letter recognition. 

Dataset Eculidean ITML LMNN BoostMetric MLEV-G MLEV-L 

letter-50 0 0 11 .24 ± 0.55 11 .24 ± 1.14 10 .15 ± 0.38 7 .37 ± 0.86 7 .28 ± 0.62 8 .56 ± 0.21 

letter-10 0 0 0 7 .28 ± 0.30 8 .33 ± 0.61 6 .06 ± 0.48 4 .23 ± 0.17 4 .58 ± 0.50 5 .36 ± 0.30 

letter-150 0 0 5 .49 ± 0.37 6 .37 ± 0.64 4 .62 ± 0.21 3 .60 ± 0.39 3 .60 ± 0.21 4 .23 ± 0.28 

letter-20 0 0 0 4 .70 ± 0.25 5 .15 ± 0.26 3 .86 ± 0.18 3 .06 ± 0.26 2 .99 ± 0.18 3 .60 ± 0.27 

Fig. 5. The data distribution of letter1 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5 

Information of large datastes. 

Dataset Instance Attribute Class Feature pattern 

Yaleface 165 1024 15 Face image 

Isolet 6238 617 26 Spoken letter 

Ads 3279 1555 2 Image, text 

Mnist 10 ,0 0 0 778 10 Handwritten digits 

Table 6 

Error rates after dimension reduction. 

Dataset Target Dim. PCA LDA MLEV-G MLEV-L 

Yaleface 20 26 .53 79 .59 44 .90 38 .78 

50 26 .53 77 .55 30 .61 32 .65 

100 30 .61 77 .55 28 .57 36 .73 

150 30 .61 77 .55 28 .57 36 .73 

200 30 .61 77 .55 28 .57 36 .73 

Isolet 20 27 .19 91 .65 29 .98 32 .76 

50 22 .70 91 .65 19 .70 21 .20 

100 20 .99 87 .37 17 .13 18 .84 

150 21 .41 85 .87 14 .78 15 .85 

200 21 .63 85 .01 16 .06 15 .85 

Ads 20 4 .18 9 .97 5 .49 4 .27 

50 4 .17 9 .97 5 .19 4 .27 

100 3 .56 9 .97 4 .58 3 .97 

150 3 .97 9 .97 3 .97 4 .78 

200 4 .48 9 .97 4 .37 5 .29 

Mnist 20 4 .6 5 .43 6 .00 

50 4 .33 5 .37 4 .37 

100 4 .43 7 .77 4 .37 

150 4 .70 10 .97 4 .77 

200 4 .83 14 .40 4 .87 

e  

d  

c  

t  

o  

d  

I  

t  

t  

s  

h  

r  

m  

P  
cal attributes which are then scaled into a range of integer values

from 0 to 15. We randomly select 50 0 0, 10,0 0 0, 15,0 0 0 instances

from the original datasets, respectively. Since MLSI can not deal

with large scale datasets, ITML, LMNN and BoostMetric are selected

to make comparison with our methods. The parameter settings and

the datasets partitions are the same as the Section 4.1 . The test er-

rors are got from the average values of 5 times random runs. From

the Table 4 , we can see that MLEV-G and MLEV-L consistently im-

prove k NN classification performance on letter recognition. MLEV-

G obtains best results on 3 datasets. The data distribution on 2D

plane is shown in the Fig. 5 . In fact, each class distributes in sev-

eral clusters and these clusters are favorable to MLEV-G since the

neighborhood of every point contains nearly no dissimilar points. 

4.3. Dimension reduction 

In the following, we will further explore the capability of our

methods in dimension reduction. We compare our algorithms with

three metric learning related dimensional reduction methods, PCA,

LDA and NCA . First, to clearly and directly understand the perfor-

mance of dimension reduction, four low dimensional datasets are

chosen to be projected into 2D space by the five methods. The

datasets are randomly partitioned with 70% and 30% patterns. The

former part of the datasets is used for training to learn the lin-

ear transformation L , and then all the instances will be projected

into 2D plane. 3 −NN classification is adopted to get the test errors.

Figs. 6 , 7 , 8 , 9 shows the data distribution and test errors after pro-

jection. MLEV-L makes the best transformation on three datasets. 

However, in real applications, the datasets are always appeared

with high dimensional, which will bring the trouble of curse of di-

mensionality or memory overflow. For example, face verification

and image recognition raise great challenges for metric learning

since they are characterized by large variations including gender,
Fig. 6. Heart(dim = 13
xpressions, pixels, etc. Meanwhile, such problems need a data-

ependent metric to improve the performance of classification or

lustering. Next, we use our methods to make dimension reduc-

ion for high-dimensional datasets(NCA rans out of memory easily

n large datasets). The classification error of k NN on transformed

ata is the index of comparison. Four datasets from UCI , Yaleface,

solet, Ads, Mnist , are selected to make experiments. The charac-

ertics are listed in the Table 5 . We reduce the dimension of all

he datasets to 20, 50, 100, 150, 200, respectively. The k NN clas-

ification errors are reported in the Table 6 and Fig. 10 . The black

orizontal solid line in Fig. 10 denotes the k NN classification er-

or on the primary datasets. Our methods obtain consistent perfor-

ance in dimension reduction, comparable to or even better than

CA and LDA on most target dimension(In Minst, LDA cannot make
,error = 24.7%). 
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Fig. 7. German(dim = 20,error = 26.0%). 

Fig. 8. Glass(dim = 9,error = 29.7%). 

Fig. 9. Clean1(dim = 166, error = 25.4%). 

Fig. 10. Dimension reduction for high-dimensional datasets. 
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dimension reduction due to the sparsity of Mnist). LDA performs

much worse than other methods. 

5. Conclusions 

In this paper, we propose two metric learning methods, MLEV-

G and MLEV-L, extracting global and local information respec-

tively, to overcome the drawback of Euclidean distance computed

in traditional k NN classification that overlooked the statistical in-

formation. The global version method aims to maximize the differ-

ence between global intra-class distance and inter-class distance,

looking for a tradeoff between shrinking the distance of similar

points and expanding the distance of dissimilar points. In local

view, the neighborhood-level difference between intra-class dis-

tance and inter-class distance is optimized. The two methods are

both constructed with respect to the linear transformation but not

the original metric, resulting in learning metric and reducing di-

mension synchronously. The optimization problems can be solved

by eigenvalue decomposition directly with much faster speed than

SDP. Numerical experiments demonstrates that our methods can

obtain competitive results in both improving the performance of

k NN classification and reducing dimension. 
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